
Serverless Workflows for Indexing Large Scientific Data
Tyler J. Skluzacek
University of Chicago

skluzacek@uchicago.edu

Ryan Chard
Argonne National Laboratory

rchard@anl.gov

Ryan Wong
University of Chicago

rewong03@uchicago.edu

Zhuozhao Li
University of Chicago

zhuozhao@uchicago.edu

Yadu N. Babuji
University of Chicago

yadunand@uchicago.edu

Logan Ward
Argonne National Laboratory

lward@anl.gov

Ben Blaiszik
Argonne National Laboratory

bblaiszik@anl.gov

Kyle Chard
University of Chicago
chard@uchicago.edu

Ian Foster
Argonne & University of Chicago

foster@anl.gov

ABSTRACT
The use and reuse of scientific data is ultimately dependent on the
ability to understand what those data represent, how they were
captured, and how they can be used. In many ways, data are only
as useful as the metadata available to describe them. Unfortunately,
due to growing data volumes, large and distributed collaborations,
and a desire to store data for long periods of time, scientific “data
lakes” quickly become disorganized and lack the metadata neces-
sary to be useful to researchers. New automated approaches are
needed to derive metadata from scientific files and to use these
metadata for organization and discovery. Here we describe one
such system, Xtract, a service capable of processing vast collections
of scientific files and automatically extracting metadata from di-
verse file types. Xtract relies on function as a service models to
enable scalable metadata extraction by orchestrating the execution
of many, short-running extractor functions. To reduce data transfer
costs, Xtract can be configured to deploy extractors centrally or
near to the data (i.e., at the edge). We present a prototype imple-
mentation of Xtract and demonstrate that it can derive metadata
from a 7 TB scientific data repository.

CCS CONCEPTS
• Information systems → Computing platforms; Search en-
gine indexing; Document structure; •Applied computing→Doc-
ument metadata.

KEYWORDS
data lakes, serverless, metadata extraction, file systems, materials
science

ACM Reference Format:
Tyler J. Skluzacek, Ryan Chard, Ryan Wong, Zhuozhao Li, Yadu N. Babuji,
Logan Ward, Ben Blaiszik, Kyle Chard, and Ian Foster. 2019. Serverless

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WOSC ’19, December 9–13, 2019, Davis, CA, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7038-7/19/12. . . $15.00
https://doi.org/10.1145/3366623.3368140

Workflows for Indexing Large Scientific Data. In 5th Workshop on Serverless
Computing (WOSC ’19), December 9–13, 2019, Davis, CA, USA. ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/3366623.3368140

1 INTRODUCTION
Advances in scientific instruments, computational capabilities, and
the proliferation of IoT devices have increased the volume, velocity,
and variety of research data. As a result, researchers are increasingly
adopting data-driven research practices, in which data are collected,
stored for long periods of time, shared, and reused. Unfortunately,
these factors create new research data management challenges, not
least of which is the need for data to be adequately described for
them to be generally useful. Without descriptive metadata, data
may become unidentifiable, siloed, and in general, not useful to
either the researchers who own the data or the broader scientific
community. Unfortunately, organizing and annotating data is a
time-consuming process and the gulf between data generation rates
and the finite management capabilities of researchers continues to
grow. To increase the value and usefulness of scientific data, new
methods are required to automate the extraction and association
of rich metadata that describe not only the data themselves, but
also their structure and format, provenance, and administrative
information.

Data lakes have become a popular paradigm for managing large
and heterogeneous data from various sources. A data lake contains
a collection of data in different formats, accompanied by metadata
describing those data. Unfortunately, the data deluge and the desire
to store all data for eternity can quickly turn a data lake into a
“data swamp” [18]—a term used to describe the situation in which
the data stored in the data lake lack the metadata necessary to
be discoverable, understandable, and usable. Without automated
and scalable approaches to derive metadata from scientific data, the
utility of these data are reduced. This problem is especially prevalent
in science as datasets can be enormous (many petabytes), are created
and shared by dynamic collaborations, are often collected under
tight time constraints where data management processes become
afterthoughts, and for which preservation is important for purposes
of reproducibility and reuse.

Extracting metadata from scientific data is a complex task. Scien-
tific repositories may exceed millions of files and petabytes of data;
data are created at different rates, by different people; and there

https://doi.org/10.1145/3366623.3368140
https://doi.org/10.1145/3366623.3368140

WOSC ’19, December 9–13, 2019, Davis, CA, USA Skluzacek et al.

exist an enormous number of data formats and conventions. While
metadata can be rapidly extracted from some data types, others,
such as images and large hierarchical file formats can require the
use of multiple extraction methods. As a result, the metadata ex-
traction process must be scalable to process large numbers of files,
flexible to support different extraction methods, and extensible to
be applied to various scientific data types and formats.

Serverless computing, and in particular function as a service
(FaaS), provides an ideal model for managing the execution of many
short-running extractors on an arbitrarily large number of files.
Serverless computing abstracts computing resources from the user,
enabling the deployment of applications without consideration for
the physical and virtual infrastructure on which they are hosted.
FaaS allows users to register programming functions with prede-
fined input signatures. Registered functions can subsequently be
invoked many times without the need to provision or scale any
infrastructure.

In this paper we propose the use of FaaS for mapping the meta-
data extraction problem to a collection of granular metadata ex-
tractor functions. We describe how such a model can support the
flexibility, scalability, and extensibility required for scientific meta-
data extraction. Rather than rely on commercial FaaS systems, we
use a distributed FaaS model that overcomes the limitation of mov-
ing large amounts of data to the cloud. Instead, we are able to push
metadata extractors to the edge systems on which the scientific
data reside.

Our prototype system, Xtract, provides high-throughput and on-
demand metadata extraction that enables the automated creation
of rich, searchable data lakes from previously unsearchable data
swamps. Xtract implements dynamic metadata extraction work-
flows comprised of serverless functions that may be executed in
the cloud or at the edge. Xtract runs as a centralized management
service that orchestrates the crawling, transfer (when necessary),
and execution of metadata extraction functions. Xtract uses the
funcX serverless supercomputing platform [5] to execute functions
across diverse and distributed computing infrastructure. We eval-
uate Xtract’s performance by extracting metadata from materials
science data stored in a 7 TB subset of the Materials Data Facility
(MDF) [3, 4].

The remainder of this paper is organized as follows. §2 outlines
example scientific data lakes. §3 describes Xtract’s serverless ar-
chitecture and presents the set of available extractors. §4 provides
initial results of system performance on hundreds of thousands of
scientific files. Finally, §5 and §6 present related work and conclud-
ing remarks, respectively.

2 SCIENTIFIC DATA LAKES
Data lakes are schemaless collections of heterogeneous files ob-
tained from different sources. Unlike traditional data warehouses,
data lakes do not require upfront schema integration and instead
allow users to store data without requiring complex and expen-
sive Extract-Transfer-Load (ETL) pipelines. This low barrier to data
archival encourages the storage of more bytes and types of data.
However, the lack of a well-defined schema shifts responsibility
from upfront integration to descriptive metadata to allow users

to search, understand, and use the data. To motivate our work we
briefly describe three scientific data lakes below.

The Carbon Dioxide Information Analysis Center (CDIAC) col-
lected an emissions dataset from the 1800s through 2017. The
dataset contains more than 500 000 files (330+ GB) with over 10 000
unique file extensions. The archive contains little descriptive meta-
data and includes a number of irrelevant files, such as as debug-cycle
error logs and Windows desktop shortcuts. The data are currently
being moved to the Environmental System Science Data Infrastruc-
ture for a Virtual Ecosystem (ESS-DIVE) archive [9]. In prior work
we extracted metadata from files in this repository and created a
data lake for users [17, 18].

DataONE [12] provides access to a distributed network of biolog-
ical and environmental sciences data repositories. DataONE man-
ages a central index across these distributed repositories, enabling
users to discover datasets based on metadata queries. Member data
repositories provide dataset- and file-level metadata to DataONE.
As of May 2019, DataONE contains over 1.2 million files and 809 000
unique metadata entries.

The Materials Data Facility (MDF) [3, 4] is a centralized hub for
publishing, sharing, and discovering materials science data. The
MDF stores many terabytes of data from many different research
groups, covering many disciplines of materials science, and with a
diverse range of file types. The downside of the expansive range of
materials data held by the MDF is that it can be difficult for users
to find data relevant to their science. The MDF reduces the “data
discovery" challenge by hosting a search index that provides access
to metadata from the files (e.g., which material was simulated in
a certain calculation). The data published by the MDF is primar-
ily stored on storage at the National Center for Supercomputing
Applications (NCSA) and is accessible via Globus.

3 XTRACT
Xtract is a metadata extraction system that provides on-demand
extraction from heterogeneous scientific file formats. Xtract can
operate in one of two modes: centralized or edge metadata extrac-
tion. In the centralized mode, Xtract processes files stored on a
Globus endpoint by first staging them to a centralized location and
then executing metadata extraction pipelines on those files. In the
edge mode, Xtract can execute metadata extraction pipelines on
edge computers near the data by deploying a collection of metadata
extraction functions to distributed FaaS endpoints.

In order to extract metadata, Xtract applies various extractors—
functions that take a file as input and generate a JSON document
of metadata for that file. In either centralized or edge mode, Xtract
assembles a pipeline of extraction functions based on file contents
and metadata extracted from other extractors. Xtract begins this
process by applying a file type extractor which informs selection
of subsequent extractors. Subsequent extractors are selected based
on their expected metadata yield. This allows Xtract to apply the
appropriate extractors to a specific file.

Xtract creates a metadata document for each file it processes.
When an extractor is applied to a file, Xtract appends the extractor’s
outputmetadata to the file’s metadata document. Once all applicable
extractors are applied to a file, Xtract loads this metadata document
into a Globus Search index [1].

Serverless Workflows for Indexing Large Scientific Data WOSC ’19, December 9–13, 2019, Davis, CA, USA

3.1 Extractors
Xtract includes extractors for many file types commonly used in
science. Each extractor is implemented as either a Python function
or Bash script. The remainder of this section outlines Xtract’s library
of extractors and the data types they have been designed to process.

The universal extractor extracts generic file information such
as file extension, path, and size. It also computes an MD5 hash (for
duplicate detection). The universal extractor is typically the first
applied to a file.

The file type extractor applies a machine learning model to
infer the type of a file. This information is crucial for determin-
ing which downstream extractors could yield metadata from that
file. Users can opt to use a pre-trained model, or to automatically
train one on their data. In the latter case, training commences by
selecting n% of the files in the repository at random and running
those files through all other Xtract extractors. We record whether
or not the extractor produces metadata and build a file → extractor
label mapping based on those that yield metadata. It then trains
a random forests model using these labels and the first 512 bytes
of the file as features. The primary goal of this extractor is to save
time—the amount of time to incorrectly apply metadata extractors
to a file can take seconds, whereas predicting which extractors will
likely produce metadata via the byte footprint of a file is tens of
milliseconds.

The tabular extractor extracts metadata from files with strict
row-column structure, such as .csv and .tsv files. It first extracts the
delimiter, location of the column-labels or header, and applies binary
search over the file to identify the existence and location of a free
text preamble. The tabular extractor then processes the columns in
parallel to collect aggregate information (means, medians, modes).
The free text preamble is re-queued for separate processing by the
keyword extractor.

The keyword extractor identifies uniquely descriptive words
in unstructured free text documents such as READMEs, academic
papers (e.g., .pdf, .doc), and abstracts. The keyword extractor uses
word embeddings to curate a list of the top-n keywords in a file,
and an associated weight corresponding to the relative relevance
of a given keyword as a proper descriptor for that document.

The semi-structured extractor takes data or pre-existingmeta-
data in semi-structured formats (e.g., .json or .xml) and returns a
metadata summary of the document, such as the maximum nesting
depth and the types of data represented at each level (e.g., structured,
unstructured, or lists). Furthermore, free text fields are isolated and
re-queued for processing by the keyword extractor.

The hierarchical extractor processes hierarchical HDF5 files
(and HDF5-based file formats such as NetCDF) commonly used in
science. The hierarchical extractor uses HDF5 libraries to extract
both the self-describing, in-file metadata as well as metadata about
various dimensions of the data.

The image extractor utilizes an SVM trained on a manually
labeled set of over 600 images to derive the class of an image,
which is useful for both downstream extractors and general file
categorization. The image classes include scientific graphics (e.g.,
Figure 1), geographic maps, map plots (i.e., geographic maps with
an interesting color index), photographs, and scientific plots (e.g.,
Figure 3). The features for this model include a color histogram, a

Figure 1: Overview of the Xtract architecture. For Site A,
functions are transmitted to the remote resource and per-
formed on local computing resources, returning metadata
to the Xtract service. Site B lacks suitable local computing
capabilities, requiring data to be staged to Xtract for analy-
sis.

standard grayscaled version of the original image, and the image
size. Further, the Xtract library also contains the downstream map
extractor that can isolate geographic entities from a photograph
of a map.

The materials extractor provides a thin wrapper over Mate-
rialsIO [8], a metadata extractor designed to process common file
formats used in materials science. MaterialsIO contains file and file-
group parsers for atomistic simulations, crystal structures, density
functional theory (DFT) calculations, electron microscopy outputs,
and images. If the Xtract sampler classifies a file as a materials file,
the materials extractor is invoked, launching each parser at the
contents of a directory.

3.2 Prototype Implementation
Xtract is implemented as a service via which users can submit
requests to extract metadata from a collection of files. Xtract first
crawls the specified files and determines an initial set of extractors
to apply to them. As outlined above, the extractors may be executed
either centrally on the Xtract server or remotely alongside the data.
As processing continues, Xtract assembles a metadata document
for each file and dynamically selects other extractors to apply.

Xtract is deployed on Amazon Web Services (AWS) and makes
use of various services. The main Xtract service is deployed on an
AWS Elastic Compute Cloud instance. Xtract manages state in an
AWS Relational Database Service (RDS) instance. Each extraction
request is stored in the database and the state is updated throughout
the extraction process. Xtract is able to send the derived metadata
to an external metadata catalog such as a Globus Search index. The
Xtract architecture is shown in Figure 1.

WOSC ’19, December 9–13, 2019, Davis, CA, USA Skluzacek et al.

3.2.1 Metadata Extractors. Xtract is designed to execute its extrac-
tors centrally or on edge storage systems near to where data are
stored. Our implementation uses the funcX [5] FaaS platform to
deploy and run extractors. funcX is specifically designed to inte-
grate with research computing cyberinfrastructure and enable a
FaaS execution interface. funcX builds upon the Parsl [2] paral-
lel programming library to manage the execution of functions in
containers on arbitrary compute resources. funcX enables Xtract
to execute metadata extraction functions at any registered and ac-
cessible funcX endpoint. We deploy the prototype with endpoints
located both on the central service and at the edge to enable both
centralized and edge extraction.

Each metadata extractor and its dependencies are wrapped in
a Docker container so that it can be executed on heterogeneous
compute environments.We have published each extractor container
to funcX and registered a funcX function for each extractor. The
function is responsible for invoking the extractor and returning the
resulting metadata as a JSON dictionary.

funcX enables Xtract to reliably scale to thousands of nodes and
deploy metadata extraction tasks on arbitrary computing resources.
Xtract can make use of any accessible funcX endpoint to process
data at the edge, sending extractor codes and containers to the
funcX endpoint for execution. In addition, funcX supports Singu-
larity and Shifter, allowing extractors to be executed on various
high performance computing systems.

3.2.2 Data Staging. Irrespective of the extraction mode, either
centralized or edge, the data to be processed must be available to
the deployed extractor container. In the case where data cannot be
directly accessed within the container (e.g., where the container
does not mount the local filesystem), data are dynamically staged
for processing. Each container includes Xtract tooling to stage data
in and out of itself. We use Globus as the basis for data staging,
using Globus HTTPS requests, to securely download remote data
into the container.

3.2.3 Security Model. Xtract implements a comprehensive security
model using Globus Auth [21]. All interactions with the Xtract Web
service are secured with Globus Auth. Users can authenticate with
Xtract using one of several hundred identity providers, including
many institutions. Xtract uses Globus Auth OAuth 2 flows to stage
data on behalf of authenticated users. Xtract first verifies a user
identity, requests an access token to perform data transfers on their
behalf, and then uses Globus to stage data from remote storage to
the Xtract extractor. Finally, the resulting metadata are published
into the search index using a Globus Search access token. The search
index is configured with a visible_to field, restricting discovery to
authenticated users.

4 EVALUATION
We evaluate Xtract by extracting metadata from more than 250 000
files stored in MDF. We deployed the Xtract service on an AWS
EC2 t2.small instance (Intel Xeon; 1 vCPU; 2 GB memory) and
deployed a private funcX endpoint on ANL’s PetrelKube—a 14-
node Kubernetes cluster. The MDF data are stored on the Petrel
data service, a Globus-managed 3 PB data store at ANL. While
Petrel and PetrelKube are located within the same network, they

do not share a file system. Thus, when executing extractors close
to the data we still stage the data from Petrel to PetrelKube for
processing.

In this section we first evaluate Xtract’s performance by crawling
all files on the MDF as a means of initializing the downstream
metadata extraction workflow and providing summary statistics
about the data. We next profile the downstream metadata extractor
functions on hundreds of thousands of heterogeneous files in MDF.
Finally, we illustrate the performance of batching multiple files into
one extractor function across multiple representative file types.

4.1 Crawling Performance
First we crawl MDF to identify and record file locations, as well as
general attributes about each file such as size and extension. Xtract
manages the crawling process from its central service, employing a
remote breadth-first search algorithm on the directory via Globus.
In processing MDF, Xtract crawled each of the 2.2 million files in
approximately 5.2 hours—at an effective rate of 119 files crawled per
second. As part of crawling, Xtract generated descriptive treemaps
about general attributes of the data. One such treemap illustrating
the proportion of the most common extensions in MDF is shown in
Figure 2. Here we observe that atomistic structure (.xyz), unknown
(nan), and image files (.tiff/.tif) are most common in MDF relative
to other types.

4.2 File Type Training
We next evaluate the time taken to perform the optional model
training step for the file type extractor. Automated training of this
model occurs by trying every extractor on each file in a 5-10%
subset of the total data set, denoting the first extractor that returns
serviceable metadata without error. This extractor represents the
file’s label and the first 512 bytes represent the features for the
random forests model. Xtract conducted such automated training
on 110 900MDF files. The entire label creation, feature collection,
and training workflow took approximately 5.3 hours. We found
that label generation constitutes a majority of this time, as feature
generation and model training total just 45 seconds. It is important
to note that, in the future, increasing the number of PetrelKube
pods concurrently serving feature label-collection functions can
drastically reduce the time taken to train the model.

4.3 Extractor Performance
Wenext evaluate the performance of Xtract’s extractors by invoking
extraction functions on MDF’s data. We process a variety of file
types including all available tabular and structured files and at least
25 000 of each other type of file, selected randomly from MDF. The
performance of each extractor is summarized in Table 1.

We observe that a majority of extractor function invocations
finish within milliseconds, and a majority of a file’s round-trip
processing time occurs due to file staging. This observation exem-
plifies the need to invoke functions near to data, directly mounted
to the file system housing the data, whenever possible. Moreover
we note that a few dozen large hierarchical files, exceeding 10 GB
in size, were not processed due to ephemeral storage constraints
on PetrelKube.

Serverless Workflows for Indexing Large Scientific Data WOSC ’19, December 9–13, 2019, Davis, CA, USA

Figure 2: A treemap of the MDF extension frequency. The proportion of the size of each box relative to the entire treemap is
equivalent to the proportion of the frequency of that file extension in MDF out of the 2.2 million total files

Table 1: Extractor performance.

Extractor # Files Avg. Size
(MB)

Avg. Extract
Time (ms)

Avg. Stage
Time (ms)

File Type 25,132 1.52 3.48 714
Images 76,925 4.17 19.30 1,198
Semi-structured 29,850 0.38 8.97 412
Keyword 25,997 0.06 0.20 346
Materials 95,434 0.001 24 1,760
Hierarchical* 3,855 695 1.90 9,150
Tabular 1,227 1.03 113 625

Figure 3: Batching: extraction time per file (ms) on batches
sized 1-256 for representative files processed by the file type,
image, keyword, and materials extractors

Finally, we explore the benefits of batching multiple files into one
function invocation request. We choose the four most applicable
extractors: file type, keyword, images and materials. We randomly
select representative files of all four types, each within 2% of the
average file sizes shown in Table 1. We implement batching by

aggregating 1-256 files into a single Xtract request and have modi-
fied the funcX function to download and process files in parallel.
Figure 3 shows that the average time required to process a file de-
creases as the batch size increases. Thus, batching can increase the
performance of metadata extraction workflows, especially those
requiring file transfers.

5 RELATEDWORK
Xtract builds upon a large body of work in both metadata extraction
systems and serverless computing. Xtract is not the first to provide
a scalable solution to extract metadata from datasets. Pioneering
research on data lakes developed methods for extracting standard
metadata from nonstandard file types and formats [20]. Most data
lakes are designed with a specific target domain for which they are
optimized, whether they primarily focus on transactional, scientific,
or networked data. Xtract is designed to be easily extensible and
therefore can be easily applied to different domains.

We [23] and others [7, 10, 14, 22] have created systems to man-
age metadata catalogs that support the organization and discovery
of research data. However, these approaches typically require that
users provide metadata and that curators continue to organize data
over time. A number of systems exist for automatically extracting
metadata from repositories. For example, ScienceSearch [15] uses
machine learning techniques to extract metadata from a dataset
served by the National Center for Electron Microscopy (NCEM).
Most data in this use case are micrograph images, but additional
contextual metadata are derived from file system data and free text
proposals and publications. Like Xtract, ScienceSearch provides a
means for users to extensibly switch metadata extractors to suit a
given dataset. Brown Dog [13] is an extensible metadata extraction
platform, providing metadata extraction services for a number of
disciplines ranging from materials science to social science. Unlike
Xtract, Brown Dog requires that files are uploaded for extraction.
The Apache Tika toolkit [11] is an open-source content and meta-
data extraction library. Tika has a robust parser interface in which
users can create and employ their own parsers in metadata ex-
traction workflows. While Apache Tika has parsers that support
thousands of file formats, the automated parser-to-file mapping

WOSC ’19, December 9–13, 2019, Davis, CA, USA Skluzacek et al.

utilizes MIME types to find suitable parsers for a file, which is of-
ten misleading for many scientific data use cases. Xtract could be
extended to support Tika extractors and to enable execution on a
serverless platform.

While most related research performs metadata extraction to
enable search, Xtract-like systematic sweeps across repositories
can also be used for analysis. For example, the Big Data Quality
Control (BDQC) framework [6] sweeps over large collections of
biomedical data without regard to their meaning (domain-blind
analysis) with the goal of identifying anomalies. BDQC employs a
pipeline of extractors to derive properties of imaging, genomic, and
clinical data. While BDQC is implemented as a standalone system,
the approach taken would be similarly viable in Xtract.

6 CONCLUSION
The growing volume, velocity, and variety of scientific data is be-
coming unmanageable. Without proper maintenance and manage-
ment, data lakes quickly degrade into disorganized data swamps,
lacking the necessary metadata for researchers to efficiently dis-
cover, use, and repurpose data. The growing size and heterogeneity
of scientific data makes extracting rich metadata a complex and
costly process, requiring a suite of customized extractors and ad-
vanced extraction techniques. We have described a serverless-based
approach for metadata extraction, called Xtract. Xtract enables the
scalable extraction of metadata from large-scale and distributed
data lakes, in turn increasing the value of data. We showed that
our prototype can crawl and process hundreds of thousands of files
from a multi-terabyte repository in hours, and that batching files
and parallelizing file staging and extraction tasks can improve the
performance of metadata extraction times.

In future work [16] we are focused on scaling the Xtract model
and exploring the use of Xtract on larger and globally distributed
datasets. We will investigate strategies for guiding extractor place-
ment across scientific repositories, weighing data and extractor
transfer costs to optimize placement. Finally, we will extend Xtract
to facilitate the integration of custom metadata extractors.

ACKNOWLEDGMENTS
This research used resources of the Argonne Leadership Computing
Facility, which is a DOE Office of Science User Facility supported
under Contract DE-AC02-06CH11357. We gratefully acknowledge
the computing resources provided and operated by the Joint Labora-
tory for System Evaluation (JLSE) at Argonne National Laboratory
as well as the Jetstream cloud for science and engineering [19].

REFERENCES
[1] Rachana Ananthakrishnan, Ben Blaiszik, Kyle Chard, Ryan Chard, Brendan Mc-

Collam, Jim Pruyne, Stephen Rosen, Steven Tuecke, and Ian Foster. 2018. Globus
platform services for data publication. In Proceedings of the Practice and Experience
on Advanced Research Computing. ACM, 14.

[2] Yadu Babuji, Anna Woodard, Zhuozhao Li, Daniel S Katz, Ben Clifford, Rohan
Kumar, Lukasz Lacinski, Ryan Chard, Justin M Wozniak, Ian Foster, et al. 2019.
Parsl: Pervasive parallel programming in python. In Proceedings of the 28th
International Symposium on High-Performance Parallel and Distributed Computing.
ACM, 25–36.

[3] Ben Blaiszik, Kyle Chard, Jim Pruyne, Rachana Ananthakrishnan, Steven Tuecke,
and Ian Foster. 2016. The Materials Data Facility: Data services to advance
materials science research. JOM 68, 8 (2016), 2045–2052.

[4] Ben Blaiszik, LoganWard, Marcus Schwarting, Jonathon Gaff, Ryan Chard, Daniel
Pike, Kyle Chard, and Ian Foster. 2019. A Data Ecosystem to Support Machine

Learning in Materials Science. (apr 2019). arXiv:1904.10423 http://arxiv.org/abs/
1904.10423

[5] Ryan Chard, Tyler J Skluzacek, Zhuozhao Li, Yadu Babuji, Anna Woodard, Ben
Blaiszik, Steven Tuecke, Ian Foster, and Kyle Chard. 2019. Serverless Super-
computing: High Performance Function as a Service for Science. arXiv preprint
arXiv:1908.04907 (2019).

[6] Eric Deutsch, Roger Kramer, Joseph Ames, Andrew Bauman, David S Campbell,
Kyle Chard, Kristi Clark, Mike D’Arcy, Ivo Dinov, Rory Donovan, et al. 2018.
BDQC: a general-purpose analytics tool for domain-blind validation of Big Data.
bioRxiv (2018), 258822.

[7] MP Egan, SD Price, KE Kraemer, DR Mizuno, SJ Carey, CO Wright, CW Engelke,
M Cohen, and MG Gugliotti. 2003. VizieR Online Data Catalog: MSX6C Infrared
Point Source Catalog. The Midcourse Space Experiment Point Source Catalog
Version 2.3 (October 2003). VizieR Online Data Catalog 5114 (2003).

[8] Materials Data Facility. 2019. MaterialsIO. https://github.com/materials-data-
facility/MaterialsIO.

[9] Environmental Systems Science Data Infrastructure for a Virtual Ecosystem. 2019.
ESS-DIVE. https://ess-dive.lbl.gov/.

[10] Gary King. 2007. An introduction to the dataverse network as an infrastructure
for data sharing.

[11] Chris Mattmann and Jukka Zitting. 2011. Tika in action. Manning Publications
Co.

[12] William Michener, Dave Vieglais, Todd Vision, John Kunze, Patricia Cruse, and
Greg Janée. 2011. DataONE: Data Observation Network for Earth—Preserving
data and enabling innovation in the biological and environmental sciences. D-Lib
Magazine 17, 1/2 (2011), 12.

[13] Smruti Padhy, Greg Jansen, Jay Alameda, Edgar Black, Liana Diesendruck, Mike
Dietze, Praveen Kumar, Rob Kooper, Jong Lee, Rui Liu, et al. 2015. Brown Dog:
Leveraging everything towards autocuration. In 2015 IEEE Int’l Conference on Big
Data (Big Data). IEEE, 493–500.

[14] Arcot Rajasekar, Reagan Moore, Chien-yi Hou, Christopher A Lee, Richard Mar-
ciano, Antoine de Torcy, Michael Wan, Wayne Schroeder, Sheau-Yen Chen, Lucas
Gilbert, et al. 2010. iRODS primer: integrated rule-oriented data system. Synthesis
Lectures on Information Concepts, Retrieval, and Services 2, 1 (2010), 1–143.

[15] Gonzalo P Rodrigo, Matt Henderson, Gunther H Weber, Colin Ophus, Katie
Antypas, and Lavanya Ramakrishnan. 2018. ScienceSearch: Enabling search
through automatic metadata generation. In 2018 IEEE 14th Int’l Conference on
e-Science (e-Science). IEEE, 93–104.

[16] Tyler J. Skluzacek. 2019. Dredging a Data Lake: Decentralized Metadata Ex-
traction. In Middleware ’19: 20th International Middleware Conference Doctoral
Symposium (Middleware ’19). ACM, New York, NY, USA, 3. https://doi.org/10.
1145/3366624.3368170

[17] Tyler J Skluzacek, Kyle Chard, and Ian Foster. 2016. Klimatic: a virtual data
lake for harvesting and distribution of geospatial data. In 2016 1st Joint Int’l
Workshop on Parallel Data Storage and data Intensive Scalable Computing Systems
(PDSW-DISCS). IEEE, 31–36.

[18] Tyler J Skluzacek, Rohan Kumar, Ryan Chard, Galen Harrison, Paul Beckman,
Kyle Chard, and Ian Foster. 2018. Skluma: An extensible metadata extraction
pipeline for disorganized data. In 2018 IEEE 14th Int’l Conference on e-Science
(e-Science). IEEE, 256–266.

[19] Craig A Stewart, Timothy M Cockerill, Ian Foster, David Hancock, Nirav Mer-
chant, Edwin Skidmore, Daniel Stanzione, James Taylor, Steven Tuecke, George
Turner, et al. 2015. Jetstream: a self-provisioned, scalable science and engineer-
ing cloud environment. In Proceedings of the 2015 XSEDE Conference: Scientific
Advancements Enabled by Enhanced Cyberinfrastructure. ACM, 29.

[20] Ignacio G Terrizzano, Peter M Schwarz, Mary Roth, and John E Colino. 2015.
Data Wrangling: The Challenging Yourney from the Wild to the Lake.. In CIDR.

[21] Steven Tuecke, Rachana Ananthakrishnan, Kyle Chard, Mattias Lidman, Brendan
McCollam, Stephen Rosen, and Ian Foster. 2016. Globus Auth: A research identity
and access management platform. In 2016 IEEE 12th Int’l Conference on e-Science
(e-Science). IEEE, 203–212.

[22] Danielle Welter, Jacqueline MacArthur, Joannella Morales, Tony Burdett, Peggy
Hall, Heather Junkins, Alan Klemm, Paul Flicek, TeriManolio, Lucia Hindorff, et al.
2013. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations.
Nucleic Acids Research 42, D1 (2013), D1001–D1006.

[23] J. M. Wozniak, K. Chard, B. Blaiszik, R. Osborn, M. Wilde, and I. Foster. 2015.
Big Data Remote Access Interfaces for Light Source Science. In 2nd IEEE/ACM
International Symposium on Big Data Computing (BDC). 51–60.

http://arxiv.org/abs/1904.10423
http://arxiv.org/abs/1904.10423
http://arxiv.org/abs/1904.10423
https://github.com/materials-data-facility/MaterialsIO
https://github.com/materials-data-facility/MaterialsIO
https://ess-dive.lbl.gov/
https://doi.org/10.1145/3366624.3368170
https://doi.org/10.1145/3366624.3368170

	Abstract
	1 Introduction
	2 Scientific Data Lakes
	3 Xtract
	3.1 Extractors
	3.2 Prototype Implementation

	4 Evaluation
	4.1 Crawling Performance
	4.2 File Type Training
	4.3 Extractor Performance

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

