Active Learning Yields Better Training Data for
Scientific Named Entity Recognition

Roselyne B. Tchoua*, Aswathy Ajith*, Zhi Hong*, Logan T. Ward*¥,
Kyle Chard'¥, Debra J. Audus?, Shrayesh N. Patel¥, Juan J. de PabloY and Tan T. Foster*+
*Department of Computer Science, University of Chicago, Chicago, IL, USA
TGlobus, University of Chicago, Chicago, IL, USA
{Data Science and Learning Division, Argonne National Laboratory, Argonne, IL, USA
§Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
Ynstitute for Molecular Engineering, University of Chicago, Chicago, IL, USA
Email: roselyne@uchicago.edu

Abstract—Despite significant progress in natural language
processing, machine learning models require substantial expert-
annotated training data to perform well in tasks such as named
entity recognition (NER) and entity relations extraction. Further-
more, NER is often more complicated when working with sci-
entific text. For example, in polymer science, chemical structure
may be encoded using nonstandard naming conventions, the same
concept can be expressed using many different terms (synonymy),
and authors may refer to polymers with ad-hoc labels. These
challenges, which are not unique to polymer science, make it
difficult to generate training data, as specialized skills are needed
to label text correctly. We have previously designed polyNER,
a semi-automated system for efficient identification of scientific
entities in text. PolyNER applies word embedding models to
generate entity-rich corpora for productive expert labeling, and
then uses the resulting labeled data to bootstrap a context-based
classifier. PolyNER facilitates a labeling process that is otherwise
tedious and expensive. Here, we use active learning to efficiently
obtain more annotations from experts and improve performance.
Our approach requires just five hours of expert time to achieve
discrimination capacity comparable to that of a state-of-the-art
chemical NER toolkit.

Index Terms—Named Entity Recognition, Machine Learning,
Word Embedding, Active Learning, Polymers

I. INTRODUCTION

A wealth of valuable research data is published in unstruc-
tured form in millions of scientific articles each year. Reading
and extracting pertinent information from those articles has
become an unmanageable task for scientists and makes it hard
to build on existing results. A major obstacle to scientific fact
extraction is the difficulty of identifying scientific entities in
text. Despite much progress in natural language processing
(NLP), scientific named entity recognition (NER) remains a
research challenge. The main reason for this gap between NLP
advances and scientific extraction needs is the lack of care-
fully annotated datasets for specific targets. In standard NER,
progress is made possible by, for example, the Conference on
Computational Natural Language Learning (CoNLL) dataset,
which supports much work that advances the state of the art.
But NER systems trained on CoNLL data do not perform well
for scientific text, due to the distinctive vocabularies used in
different scientific disciplines and subdisciplines.

Science-specific training datasets have been established in
biology [1] and, more recently, chemistry [2]. However, the
expert effort required to design extraction schema, define clear
annotation rules, and generate training data is substantial, and
cannot feasibly be performed for every field of science. As a
consequence, annotated datasets do not exist in most fields,
preventing the application of state-of-the-art NER and fact
extraction methods.

This problem is apparent in materials science, where ma-
terials informatics seeks to combine large datasets and com-
putational models to replace current trial-and-error materials
design processes with targeted materials design, thus reducing
time-to-market and development costs of new materials [3].
Unfortunately, the lack of annotated training data has hindered
progress, preventing large-scale application of NER methods
pioneered in, for example, biomedicine. Those methods, which
often use hybrid rule-based, machine learning, and statistical
techniques to extract entity names and relations from the
literature [4,5], require much training data. While similar
efforts have begun in materials science [6—10], the lack of
available training data impedes rapid progress. Instead, each
new research project targeting a new type of material, property,
or relation must first undertake considerable effort to create
a large, carefully annotated training set tailored for this new
target, a task that often requires considerable in-depth domain
knowledge.

The subfield of polymer science puts these problems in par-
ticularly stark relief. Polymers have their own unique nomen-
clature, as we explain below, and thus annotated datasets
created for general chemistry are of little value. Scientists and
engineers lack access to a freely available large database of
polymers and their properties. To address these challenges,
we have previously designed polyNER [11,12], a system
for generating training data for scientific NER using semi-
supervised and supervised learning. PolyNER uses NLP to
produce sets of candidate entities, which experts approve or
reject via a Web interface; the resulting labels are used to train
context-based word vector classifiers. PolyNER’s labels can
also be used to train other machine learning models to leverage
other features in addition to context, such as word morphology

to recognize target entities. The goal is to substitute the labor-
intensive processes of assembling a large manually annotated
corpus (and reduce costs) by using small numbers of carefully
selected candidates to be labeled via focused expert input. We
aim in our work to slash the expert time and effort required
to achieve state-of-the-art NER performance in a new field.

In this paper, we seek to improve polyNER’s performance
by improving the labeling process and the classification of
entity word vectors. Specifically, we address two challenges:
(1) lack of (expensive) training data in some fields, including
our own polymer science application which lacks free access
to large polymer databases; and (2) the need for domain expert
curators, which impedes the use of crowdsourcing platforms
such as Amazon Mechanical Turk [13] or Figure8 (https:
/lwww figure-eight.com/). In the initial labeling phase, we
experiment with different representative (commonly used)
entities to increase the fraction of target entities in the dataset
to be labeled and bootstrap the context-based word vector
classifiers. In the subsequent labeling and classification steps,
we use active learning with maximum entropy uncertainty
sampling and two different pools of unlabeled data to train
classifiers, and compare their learning rate after five rounds.
Using labels generated via active learning, we train word
vector classifiers and achieve NER performance comparable
to a modified version of a state-of-the art rule-based chemical
entity extraction system, ChemDataExtractor (CDE) [9]. We
have previously enhanced CDE with dictionary- and rule-
based methods for identifying polymers [14]. Our system,
however, took five hours of expert time to achieve this result.

The rest of this paper is as follows. In Section II, we
motivate the need for identifying polymer names in text.
We review semi-supervised methods for NLP systems in
Section III. We describe the design and implementation of our
active learning-based approach in Section IV. We evaluate our
approach in Section V. We summarize and discuss future work
in Section VI.

II. MOTIVATION

Our work is generally motivated by the need to extract
previously unmined scientific entities; our initial goal is to
enable machine-learned extraction of polymer names. The
challenges of polymer science NER are similar to those in
biomedicine [2, 15]. Entities can be described with multiple
referents (synonymy). Conversely, the same word may refer to
different concepts depending on context (polysemy). For ex-
ample, polystyrene is often referred to as PS, but polystyrenes
can also be referred to as GPPS, HIPS, and EPS; combined
with other monomers yielding SBR, SBS, and ABS; or used to
describe polystyrene derivatives such as PAMS, PMS, and PSS.
While standards for naming polymers exist (e.g., International
Union of Pure and Applied Chemistry (IUPAC [16]) naming
conventions), they are not always followed in practice [17]. In-
stead, polymer names may be reported as source-based names
(based on the monomer name), structure-based names (based
on the repeat unit), common names (requiring domain specific
knowledge), trade names (based on the manufacturer), and

names based on chemical groups within the polymer (requiring
context to fully specify the chemistry), generating variability in
naming conventions. Typographical variants (e.g., alternative
uses of hyphens, brackets, spacing) and alternative component
orders cause more variations between polymer names in the
literature. The origin of these different naming conventions is
linked to the desire for clarity within a journal article, coupled
with the often-complicated monomeric structures [18].

In addition to challenges related to the makeup of the
scientific entities, the scarcity of entities in scientific literature
and the lack of training data also impede the use of machine
learning based NER techniques. Considerable time and manual
effort are involved in creating and maintaining the balanced
CoNLL dataset for standard NER [19]. Example sentences
from such corpora include one or more entities per sentence. In
our attempt to recognize polymer names in full text documents,
we face a very imbalanced dataset where most sentences do
not contain a target entity, as there are only a handful of target
entities per document. While there has been much interest in
machine learned recognition of biochemical entities [7-9, 20],
the successes that have been achieved have required much
human effort to generate quality training data [2]. Previous
work has also found that even state-of-the-art NER systems
rarely perform well when applied to different domains [21].
Therefore, the problem of training machine learning models
to recognize new scientific entities in a new field, such as
polymer science, remains challenging.

III. RELATED WORK

NER and other information extraction tasks rely on a large
amount of training data, which are expensive to obtain. Weakly
supervised learning methods work with much less training
data and aim to address this challenge. They generally fall
under two categories: semi-supervised learning and active
learning [22]. The key difference between the two is that
the former relies on approximately labeled data (as opposed
to correctly labeled data for supervised learning) and the
latter starts off with unlabeled data. Semi-supervised learning
attempts to label data automatically by using prior knowledge
and a set of labeled data. For example, it assumes that if x
and y are similar, they probably have the same label (first
cluster the whole dataset, then label each cluster with labeled
data [23]). Active learning assumes there is a source of
knowledge, such as a human expert, that can be queried to
label a selected batch of unlabeled data.

A. Semi-supervised Approaches

Bootstrapping is a semi-supervised technique, which starts
from a small set of seed relation instances and iteratively learns
more relation instances and extraction patterns. Snowball [24]
which improved the DIPRE system [25], used an intuitive
idea to collect new entity relations using a set of seed entity
pairs. In the DIPRE system, the intuitive assumption is that,
given a few seed entity relations, the text between two known
target entities in close proximity of each other describes and
constitutes a pattern of the relation between the two. Since

that is not the case in practice, the system uses a limited set of
regular expressions to limit useful patterns, hence decreasing
the number of false positives. A key improvement of Snowball
is that its patterns include named entity tags (PERSON,
LOCATION, ORGANIZATION, etc.). Given a handful of
seed tuples of ORGANIZATION and LOCATION, Snowball
attempts to learn the relation HeadquarteredIn by assuming
that each time the tuples appear in close proximity to each
other, the text in between illustrates the desired relation. This
text can then be used to discover new tuples, which can in
turn be used as seeds for the next discovery round. Of course,
organizations may be located but not headquartered in multiple
cities; hence it is important to inspect the quality of extraction
patterns to reduce noise in the generated output.

Distant supervision maps known entities and relations from
a structured knowledge base onto unstructured text [26,27].
With freely available structured knowledge base such as DB-
Pedia [28] and Freebase [29], it is possible to leverage a large
set of known entity pairs to generate training data. Over the
past decade, probabilistic approaches have been proposed to
allow automatic selection. For example, PaleoDeepDive [26],
built upon DeepDive [27], automatically extracts paleontologi-
cal data from text, tables, and figures in scientific publications.
For good performance, such approaches often rely on and
extend large databases: for example, PaleoDeepDive uses
PaleoDB [30]. The system labels any entity pair that appears
in the database as True. The user defines features (e.g. if a
specific keyword appears between two entities, that pair a
certain attribute is labeled True, but if the entity pairs are too
far apart, another attribute is marked False), the system then
uses statistical inference to determine the probability that each
newly discovered pair of interest is True.

Data programming, as used in the Snorkel system [31],
has users define labeling functions to provide labels for data
subsets. Errors due to differences in accuracy and conflicts
between labeling functions are addressed by learning and mod-
eling the accuracies of the labeling functions. Under certain
conditions, data programming achieves results on par with
those of supervised learning methods. While writing concise
scripts to define rules may seem to be a more reasonable task
for annotators than exhaustively annotating text, it still requires
expert guidance. In data programming as in bootstrapping and
distant supervision it is important to evaluate the quality of
functions and extraction patterns to decrease noisy patterns.

B. Active Learning

Active learning [22] assumes that gold standard labels for
unlabeled instances can be obtained by querying an oracle
(domain expert or source of knowledge). The goal of active
learning is to decrease labeling costs by requesting a limited
number of labels from the oracle, that have been deemed
most valuable by the learner. Uncertainty sampling approaches
define ‘“valuable” data by measuring uncertainty in the pre-
dictions. For example, in the case of a single learner, query-
ing predictions with maximum entropy in which the learner
assigns all classes with equal probability [32] or predictions

closest to the decision boundary in the case of support vector
machine classifiers [33]. In the case of multiple learners,
query-by-committee requests labels for unlabeled instances on
which the learners disagree the most [34]. Uncertainty sam-
pling and query-by-committee are representative approaches
based on informativeness, where informativeness measures
how well an unlabeled instance helps reduce the uncertainty.
Another selection criterion addresses representativeness, which
measures how well an instance helps represent the structure
of input patterns; in this case selection is made by querying
data from unlabeled clusters of data [35, 36].

C. CDE and CDE+

We introduce briefly ChemDataExtractor (CDE), a state-
of-the-art chemical NLP tool that combines a dictionary,
expert-created rules, and machine learning algorithms. CDE
was trained on the CHEMDNER corpus: a collection of
10000 PubMed abstracts with 84355 chemical entity men-
tions labeled manually by expert chemistry literature curators,
following annotation guidelines specifically defined for this
task [2]. In previous work, we modified CDE with manually
defined polymer identification rules [14], creating what we
term here CDE+. We compare our methods against both CDE
and CDE+ in Section V.

D. Placing polyNER in Context

PolyNER has in common with prior work that it combines
semi-supervised and active learning [35,37]. The initial sam-
pling of unlabeled data is similar to bootstrapping but applied
to named entities rather than entity pairs. The initial batch of
labels contains strings deemed similar to a few seed entities,
with similarity determined by using word representations and
vector distance measures. As this approach is approximate and
is likely to include errors (words that have similar context
to entities but are not actual entities), the next phase is
expert labeling. Subsequent batches of labels are obtained via
active learning and used to train a context-aware word vector
classifier in the last phase. PolyNER can be used in a way that
complements other scientific NER approaches. For example, it
could be used as a scientific entity tagger (i.e., recognizer) to
be used with data programming to extract polymer properties.

IV. DESIGN AND IMPLEMENTATION

As previously mentioned, our main goal in designing
polyNER is to slash labeling costs by reducing the time
and effort spent by experts to generate training data. Rather
than labeling entire documents and phrases, annotators label
proposed candidate entities to be classified. Earlier results
show that with two hours of labeling we can achieve precision
or recall (but not both) on par with state-of-the-art domain
specific software, by selecting an ensemble of classifiers for
discrimination [12].

Here, we refine polyNER components and incorporate ac-
tive learning with different sampling strategies in order to
further improve performance. PolyNER uses word representa-
tions and minimal domain knowledge (a few seed entities) to

produce a small set of candidates for expert labeling; labeled
candidates are then used to train named entity word vector
classifiers. We integrate an active learning loop into polyNER’s
architecture to incrementally improve classifier performance.

In order to explore whether the use of word vector coor-
dinates as features can accelerate the learning process, we
define and compare three alternative sampling strategies: a
random strategy that we use as a baseline, and two NLP-
based filtering methods. We also apply these methods against
two different candidate pools, one set of unlabeled nouns and
another set of approximately labeled nouns deemed similar to
commonly used known entities from our corpus. We describe
our sampling strategies and approximate labeling in more
details in this section. The general architecture of polyNER is
illustrated in Figure 1. We also describe the labeling process,
and the training and testing configuration for our word vector
classifiers in Section IV-F

A. Computing Word Embeddings

A word embedding method maps each word in a docu-
ment to a vector in an n-dimensional real vector space that
represents the linguistic context in which the word appears.
This mapping may be based, for example, on co-occurrence
frequencies of words. We can then determine the similarity
between two words by computing the distance between their
corresponding vectors in the feature space.

We use Word2Vec, a recent, light-weight and easy-to-use
implementation of context-based vector representations [38,
39]. Specifically, we use the Gensim continuous bag-of-words
(CBOW) implementation of the Word2Vec algorithm [40] to
generate vectors. Prior parameter tuning indicated that window
size and vector size did not have a significant impact on
the yield of polymers (less than 5%) on initial bootstrapping
(see Section IV-C below). Nevertheless, for slightly higher
yields, we set the Word2Vec size parameter to 100 and the
window_size to 2; where size is the size of the vector,
and window_size is an adjustable window of surrounding
context word used to compute each embedding.

B. NLP-Filtering

The NLP filtering preprocessing step removes strings that
are unlikely to be polymer referents. Hypothesizing that names
of scientific entities will not, in general, be English vocabulary
words, we also remove words found in the SpaCy dictionaries
of commonly used English words [41]. We manually remove
common polymer names, such as polystyrene and polyethy-
lene, from the dictionaries. We use SpaCy’s part-of-speech
tagging functionality to remove non-nouns. We also eliminate
strings that represent numbers (including numbers followed by
common units) and remove extraneous characters from the be-
ginning and end of each candidates to filter out mispellings. Fi-
nally, we remove plurals (e.g., polyamides, polynorbornenes),
as they can represent polymer family names. Note that these
steps are generalizable and applicable to multiple science
fields. We refer to the set of words that results when these

filtering operations are applied to our corpus as the NLP-
filtered candidates. This set is the output of step 1 in Figure 1.

C. Initial Bootstrapping and Labeling

NLP filtering reduces the number of entities to be consid-
ered, and increases the target vs. non-target entity ratio. How-
ever, there still remain a large pool of potential candidates from
which entities are to be selected, of which, in our experience,
roughly 5% are polymer names. In order to avoid presenting
experts with mostly negative examples, hindering meaningful
classification, we boost the number of polymer entities in the
first batch of candidates to be annotated by selecting strings
with low word vector distance (see Section IV-A) from a set
of seed entities: words that are observed to occur frequently
in a subset of publications, or that are suggested by experts.
We discuss this distance metric in more detail below. Based
on preliminary experiments, we set the size of each batch
of strings to be labeled to 200, or about an hour of expert
time. We then train the initial classifier on this bootstrap
set, using 80% of the data for training and 20% for testing.
We subsequently used three different sampling strategies for
following classifications.

D. Sampling Strategies

We implement three sampling strategies, which we refer to
as Random, Uncertainty-Based Sampling (UBS) and Distance
Uncertainty-Based Sampling (Distance UBS). We apply each
of these strategies to our NLP-filtered candidates to determine
which candidates to present to experts for labeling.

1) Random: Here, we randomly select 200 of the NLP-
filtered candidates.

2) Uncertainty-Based Sampling (UBS): Our second strat-
egy applies maximum entropy sampling to the NLP-filtered
candidates. As previously mentioned, maximum entropy se-
lection is an uncertainty sampling method that identifies data
points for which a classifier predicts outcomes that lie near
the decision boundary between classes. Thus, when predicting
whether or not a word vector represents a polymer, maximum
entropy arises when the classifier assigns equal probability to
the polymer and not-polymer cases. As we have two classes,
this equal probability is 0.5. We use the classifier to obtain a
probability p for each NLP-filtered candidate. We select the
200 entries for which p is closest to 0.5 as our sample.

3) Uncertainty-Based Sampling with Distance Ranking
(Distance UBS): Our third strategy is identical to UBS, except
that it works with just a subset of the NLP-filtered candidates,
namely the 10000 that are closest to a set of seed entities.
The intuition here is that a candidate is more likely to be a
target referent (a name, acronym, synonym, etc.) if it used in a
similar context. For example, the polymer name “polystyrene”
in a sentence “The melting point of polystyrene is ... suggests
that X may also be a polymer in the sentence “The melting
point of X is ...”.

We use the word embeddings introduced in Section IV-A
to capture this notion of context, and vector distance between
word vectors as a measure of similarity. Whether or not this

Active Iearning

Word embedding v I
model generated (1) . (2) . (3). () . (5.) Digital
from publications _NL_P Initial bootstr_applng Sampll_ng Expert and untl:alned Canfi_ldat_e dictionary
filtering and labeling strategies crowd labeling classification
f ! 1 Random ’ * '
Cut numbers, Distance i —
mma cut adjectives, /lﬁ' — DlztBagce
trim :.,:- etc. // —
el
//

Fig. 1: PolyNER system showing the different phases of polyNER including the NLP-filtering step, the initial bootstrapping and
labeling phase as well as the newly integrated active learning loop to classify scientific named entities.

approach works in practice will depend on whether polymer
names are in fact used in consistent contexts as captured by
our word embedding vectors.

We can then determine, for each NLP-filtered word, the
extent to which it occurs in a similar context to the seed
entities, by computing the similarities between the word’s
vector and those for our seed entities. As we explain in
Section V-B, we experiment with one and more seed entities;
when dealing with multiple seed entities, we use the lowest
distance score for ranking candidates.

E. Bootstrapping

The UBS and Distance UBS sampling methods use a
classifier to determine which NLP-filtered entities should be
chosen next for expert labeling. This classifier must be trained,
and thus we need an initial set of entities to bootstrap this
process. We could choose NLP-filtered entities at random for
initial labeling, but that choice is unlikely to perform well
due to the low proportion of polymers (just 5%) in the NLP-
filtered corpus. Instead, therefore, we create an initial bootstrap
set comprising the 200 NLP-filtered entities that are closest,
in word distance vectors, to a set of seed entities. We then
train the initial classifier on this bootstrap set, using 80% of
the data for training and 20% for testing.

FE. Active Learning Loop

We now discuss our active learning process. As discussed
in Section III-B, the basic idea here is that we repeatedly
select a set of 200 candidate entities (a “sample”) for expert
labeling, based on what we have learned from previously
labeled entities. We run this process independently with the
Random, UBS, and Distance UBS sampling strategies, in order
to compare their performance.

1) Use and Evaluation of Classifiers: Not specified in
Section IV-D is the nature of the classifier that the UBS and
Distance UBS strategies use to estimate the probability of
each entity in the NLP-filtered corpus (or, for Distance UBS,
the 10000-entity subset of the NLP-filtered corpus) being a
polymer. (The Random strategy does not use a classifier for
sampling, as it selects candidates at random.) As we have no
prior knowledge of the distribution of target entities in the

vector space, we consider seven distinct classifiers in each
round of the active learning process: the scikit-Learn [42]
implementations of Decision Tree, Gradient Boosting, K-
Nearest Neighbor (KNN), Logistic Regression, Linear Support
Vector Machine, Naive Bayes, and Random Forest. In each
case, we use the word embedding for each string as input
features. In each round ¢, we train these seven classifiers on
the sample data gathered in rounds j, j<i, and then use the
classifier with the highest recall to determine the p scores that
UBS and Distance UBS use when assembling their 200-entity
sample in that step. (We use recall, or retrieving a maximum of
targets, as a measure of performance, because we want to favor
extracting a higher number of targets, potentially requiring
additional curation, over obtaining fewer correct targets.)

The 200 entities in the new sample are passed to experts
for annotation, and the annotated data are added to the set of
training data used in the next learning round.

2) Expert (and Non-expert) Labeling: We engage two do-
main experts to annotate the candidates generated by the UBS
and Distance UBS sampling strategies. Each expert annotates
one strategy; we also perform crosschecking for 10% of the
first batch of labels, to get a measure of agreement between ex-
perts, with results reported in Section V-C. Experts use a web
interface (see Figure 2) to approve or reject candidates, a task
that is far more efficient than reading and annotating words
in text. The interface provides example sentences as context
for ambiguous candidates and allows the expert to access the
publication(s) in which a particular candidate appears.

We aim to reduce the amount of costly expert time used to
obtain labels. Therefore, for our baseline of randomly sampled
NLP-filtered nouns, we experiment with a two-phase review
process. Tokenization is one of the largest sources of error for
scientific entities such as polymers, which contain characters
such as ‘’, ‘C, ’=’, “, etc. Tokenization can also generate
incoherent tokens from text, equations, captions, etc. Such
obvious non-candidates can be fairly easily detected by non-
experts. For example, an untrained human annotator may be
able to recognize that ‘d%/dQ)(Q’ is not a polymer name,
and thus save time for the experts. Hence, we assigned two
graduate student labelers to curate the candidates generated by
the random sampling strategy, which are less likely to contain

Name ispolymer? Notes Submitnotes Bookmark

Example sentence

More
Examples?

Nore
P(CL-co-PDSC) % | mano

e
TOLP. Add note
P

in situ dehydrati

Fig. 2: Web interface for expert review of candidates. The expert
indicates whether the name (column 1) is a polymer (tickbox in
column 2), providing notes if desired (column 3). Clicking on “?”
delivers up to 25 more example sentences.

target entities. We asked these untrained labelers to reject
obvious non-candidates via the previously mentioned web
interface. Our experts then reviewed the remaining candidates,
indicating for each whether it is in fact a polymer referent.

V. EVALUATION

We first report on a study in which we evaluate the
generation of candidate entities using vector distances from
representative (frequently used) entities. We then discuss the
results of initial classification and subsequent four rounds of
active learning using multiple word vector classifiers and our
three sampling strategies: random, UBS, and Distance UBS.
Finally, we experiment with word representations enhanced
with character-level information using FastText [43, 44].

In this work, we evaluate extraction accuracy in terms
of precision and recall. Precision refers to the fraction of
predicted positives that are labeled correctly and recall to the
fraction of actual positives that are labeled correctly.

A. Dataset

We reuse a corpus of 1690 full-text publications in HTML
format from Macromolecules, a relevant journal in polymer
science [12]. These documents comprise 381947 sentences
and 9229417 (253 195 unique) words or “tokens,” of which
23205 pass the NLP filter of Section IV-B. From this corpus,
we set aside a test set of 100 documents with 22 664 sentences
and 508391 (36293 unique) tokens, of which 9656 pass the
NLP filter. Six experts identified all one-word polymer names
in this test set, a process that produced 467 unique one-word
polymer names. We use these 467 names as a gold standard
in subsequent subsections; we automatically label all NLP-
filtered strings from the 100-document test set using these
manually extracted names.

B. Seed Entities

Recall from Section I'V-A that polyNER uses the Word2Vec
word embedding tool to compute a word vector for each word.
In order to maximize the number of actual entities in the
dataset—and the ratio of target to non-target entities—in the
initial set of labels, we explore how the choice of seed entities
impact the number of target entities retrieved. While we cannot
expect meaningful classification using only positive examples,
given the imbalance in the whole dataset, we aim to select the
Word2Vec parameters that yield the highest ratio of polymers
in this initial batch of candidates.

In the experiments that follow, we use the 467 gold standard
polymer names identified by experts in our 100-document

test set to evaluate performance with different seed entities.
Specifically, for each choice of seed entities that we want to
evaluate, we determine the 10000 NLP-filtered words with
vectors closest to the seed entity vectors, and report what
fraction of the 467 gold standard names are included in that
10000. We use lower-case exact string matching between
the gold standard polymer names and the proposed distance
candidate strings to determine if a candidate is a polymer.

In previous work using the same corpus [45,46], we built a
dictionary of polymer names by using a rule-based approach
and aggregating synonyms across ChemDataExtractor records.
(A record consists of all information found about a chemical
entity in a document.) Here we use this dictionary to identify
the 10 most frequently occurring polymers in our corpus and
their acronyms. We assume that frequent polymers provide
a large number of sentences that illustrate context in which
polymers are commonly used. Hence, we first test the most
frequent, the three most frequent, and the ten most frequent
polymers as seed entities. We also experiment with including
and excluding their acronyms as additional seed entities. (Note
that this modest set of 1, 3 and 10 seed entities could also be
suggested by an expert.)

Rows 1-6 of Table I shows the results for these experiments.
When using polystyrene (the most frequently used name) as
a seed entity, the candidates contained 33.6% of the 467 gold
standard polymers. We note a 2% increase in the fraction
of polymers retrieved when using both polystyrene and PS,
when compared to using polystyrene alone. The fraction of
polymers increases by 10% when we use three representative
entities (the three most frequent polymers in our datasets are
polystyrene, poly(methyl methacrylate), and polyethylene),
but by less than 1% when using 10 instead of three entities.
These results suggest that there is little value to using more
than a few seed entities.

TABLE I: Fraction of gold standard polymer names in the 10 000
entities that are closest, by word vector distance, to various sets
of seed entities.

Fraction of

Seed entities polymers

extracted
1 | Polystyrene 35.6%
2 | Polystyrene, with acronym PS 37.7%
3 | Three most frequent polymer names 46.9%
4 | Three most frequent polymer names, with acronyms 48.0%
5 | 10 most frequent polymer names 46.5%
6 | 10 most frequent polymer names, with acronyms 48.4%
7 | xDB polymer names 46.7%
8 | crowDB polymer names 36.4%

To further explore whether using larger numbers of seed
entities may increase the fraction of polymers retrieved, we
conducted a second set of experiments. We have built a small
database of polymer properties (YDB) in previous work [45,
46]. Our corpus of 1690 publications included 111 out of 175
xDB polymers. We also scraped CrowDB, which lists some
polymers and their properties at http://polymerdatabase.com/

for polymer names; 32 out of 295 scraped polymer names
were found in our corpus. We measure how many of our
gold standard polymers are identified when these 111 and 32
polymer names are used as seed entities, with results shown
in rows seven and eight of Table 1. These results confirm that
using more entities does not increase the yield of polymers.
Thus, in all subsequent experiments, we use the three most
frequent polymers and their acronyms as seeds.

C. Labeling

We conduct some experiments to estimate labeling time.
We ask two polymer scientists to label 200 candidates from a
subset of our corpus. One expert reports 30 minutes, the other
45 minutes. We overestimate the time to label 200 candidates
at one hour of expert time. Based on user feedback, we also
improve the labeling Web interface after the above mentioned
test rounds to further facilitate and speed up labeling. For
example, we increase the number of example sentences avail-
able to provide context, to decrease the number of occurences
in which experts have to look up original publications for
candidates. We also increase the size of checkmarks to make
it easier to reject erroneous candidates. In the initial labeling
round, we perform crosschecking for 10% of the batch of
labels. We confirm agreement between labels for all but one
of 20: an agreement rate of 95%.

D. The Initial Classifier

Recall from Section IV-E that we use an initial set of 200
NLP-filtered entities that are close to seed entities to bootstrap
our labeling process. Once those data are labeled by our
experts, we use 80% to train a KNN classifier, validating on
the remaining 20%. We then test this initial classifier against
all 9656 NLP-filtered candidates in the 100-document test set,
which as noted in Section V-A contain 467 polymers. Results
are shown in Figure 3. Its Receiver Operating Characteristic
(ROC) curve shows better-than-random behavior, with an area
under curve (AUC) of 0.62. However, in our application, cor-
rectly predicting non-polymers is not as important as correctly
identifying our targets. Therefore, we also plot in the Precision
Recall (PR) curve to show the tradeoff between precision
and recall. While the AUC for the initial classifier is above
random performance (0.5) its PR curve shows poor precision,
regardless of recall. In previous work [12], we found that
we could achieve better performance with more labels (897),
suggesting that a KNN classifier begins to learn with more
data. However, 160 labels (80% of 200) is not yet enough.

E. Comparing Sampling Strategies

After the initial round of labeling, we experiment with the
three sampling strategies described in Section IV: Random,
UBS, and Distance UBS, performing four rounds of active
learning for each. Results, in Table II, show a significant
amount of fluctuation and no notable improvement in the
first two rounds for any strategy: precision remains under
the initial precision of 6.5% for all. However, in the third
round, we observe increases in precision, an improvement that

is sustained in the fourth round for UBS. Figure 4 shows
ROC and PR curves for the three strategies after four rounds.
The AUC for UBS is 0.74 and that of Distance UBS is 0.70.
The PR curves for both are improved (lifting away from the
lower left corner of the graph) over the first round, with
active learning performing better with UBS than with Distance
UBS. When tested against our gold standard of 467 one-word
polymer names, the KNN classifier achieves 18.2% precision
and 45.6% recall. We notice that even the random strategy
PR curve is improved (away from the initial PR curve and
close to the Distance UBS curve), indicating that the NLP-
filtering alone is enough to enable the learning process after
1000 labels. We also note that KNN was most-often selected
across strategies and iterations; likely due to its inherent nature
to optimize locally and our direct focus on finding similarities
between observations.

We conclude that while the sampling step helps ensure
that the classes are balanced in the initial batch of labels,
restricting ourselves to just distance candidates, as is done by
Distance UBS, does not yield better results than using active
learning with all NLP-filtered candidates (UBS). Intuitively,
basic UBS can find useful instances (target and non-targets)
to be labeled from the entire word embedding space, while
examples from Distance UBS are clustered around the seed
entities that may be collocated in that space.

TABLE II: Precision and recall relative to the gold standard for
the initial classifier (round 0) and the classifiers trained also with
the increased data obtained in each of four learning rounds, 1-4.

Strategy
Round | Metric Random | UBS | Distance UBS
0 Precision 6.5%
Recall 19.1%
1 Precision 3.8% 3.2% 5.3%
Recall 0.29% | 93.6% 56.8%
5 Precision 1.5% 3.8% 5.4%
Recall 1.5% 46.4% 10.1%
3 Precision 6.0% | 21.2% 3.9%
Recall 44.6% | 40.0% 84.3%
4 Precision 12.3% | 18.2% 7.2%
Recall 33.3% | 45.6% 51.9%

We selected seed entities based on their frequency in our
corpus. This observation suggests that we could also study
how the choice of seed entities impact of the performance
of the classifier during the active learning process. We revisit
this concept of diversity of labels in the Section V-G. Note
that with limited training data and based solely on context,
the classifier retrieves 45.6% (more than one third) of the
gold standard polymers with a precision of 18.2%, after five
hours of expert labeling. For comparison, an attempt to extract
polymer names using the rule: if the name contains “poly”
extract it as a polymer, gets recall of 41% and precision of
34% on the same dataset. We conclude that with our relatively
small and noisy dataset (based on context-only information
from entire documents of unstructured and uncurated text),
we are able to achieve close to rule-based performance, using
active learning and little labeling.

1.0

e e e
» o]

True Positive Rate

e
N

0.0 — ROC (AUC = 0.62)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

1.0

0.3

Precision
[
o

[
kS

0.2

b

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

Fig. 3: ROC (left) and PR (right) curves for KNN model for the initial classifier. The PR curve shows that precision is low regardless

of recall, indicating that we need more data.

1.0

e e
o]

True Positive Rate
e
kS

e
N
\

JRe —— Random ROC (AUC = 0.68)
ol UBS ROC (AUC = 0.74)
00| ¥ —— Distance UBS ROC (AUC = 0.70)
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

10 * Rule-based
—— Random

UBS
0.8 —— Distance UBS

e
o

Precision

e
'S

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0
Recall

Fig. 4: ROC (left) and PR (right) curves after four rounds. The ROC curves for two active learning strategies, UBS and Distance
UBS, show significant improvements, achieving AUCs of 0.74 and 0.70, respectively: significantly better than the 0.62 achieved
by the initial classifier in Figure 3. Random achieves an AUC of 0.68. PR curves also show improvements relative to the initial
classifier, with all three strategies lifting away from the bottom corner, indicating discriminative capacities. In both types of plots,
UBS outperforms Distance UBS and approaches rule-based performance based solely on context information and under five hours

of expert input.
F. Active Learning Labels + Character-Level Embeddings

After just 1000 labels, the context-based classifier using
active learning applied to NLP-filtered candidates achieved
performance comparable to rule-based performance, but not
quite as good as the polymer-enhanced CDE+. With the goal
of further improving polyNER performance, we experiment
with the use of an alternative word embedding model, Fast-
Text, which uses word representations enriched with sub-word
(character-level) information. Because FastText considers sub-
word information as well as context, it can consider word
morphology differences, such as prefixes and suffixes. Sub-
word information is especially useful for words for which
context information is lacking, as words can still be compared
to morphologically similar existing words. We set the length
of the sub-word used for comparison—FastText’s n_gram
parameter—to five characters, based on our intuition that many
polymers begin with the prefixes “poly” or “poly(.” Therefore,
we generate a FastText word embedding model, and generate
character-enhanced vectors for our UBS-labeled candidates.

Next, we train a KNN classifier using vectors for the
candidates labeled through active learning from the NLP-
filtered candidates (the active learning strategy identified as

best-performing in Figure 4). We test the classifier against
NLP-filtered nouns from our 100-document test set. KNN clas-
sifier performance improves when using these word vectors,
achieving 29.7% precision and 81.9% recall, comparable to
those achieved by CDE (see Section III-C). CDE’s recall is
high at 74.5%, but its precision for polymers is, as expected,
low at 8.7%, as it does not incorporate polymer knowledge.
In Figure 5, we show the PR curve for the FastText vector
classifier and also results for the polymer-enhanced CDE+,
which achieve 42.2% precision and 68.3% recall on the same
test set. We achieve higher recall than CDE and CDE+ using
labels from UBS and FastText vectors and in-between (higher
than CDE and lower than CDE+) precision.

G. Discussion and Future Work

We have previously used seed entities to bootstrap classifiers
of context-based word vectors. Using an ensemble of classi-
fiers, polyNER allowed users to tradeoff precision and recall.
In this attempt to improve performance, while efficiently using
experts’ time, we used active learning to obtain more labels.
However, we do not observe an increase of precision over
the 5% fraction of polymers until the third round of active
learning with NLP-filtered words (800 labels). This suggests

that our label batch size is lower than the minimum number
of labels necessary to start the learning process. More detailed
study of performance vs. label batch size will help pinpoint
the appropriate number of labels and level of bootstrapping
required for learning. We can also ask the following questions:
Could we achieve CDE performance classifying only context-
based (not character enhanced) representation? If so, how
many more iterations would it take? If not, how much do we
need to increase the size and/or improve our current corpus
of 1690 documents? Corpora for NER tasks are curated and
typically include sentences with one or more entities. We
could investigate other semi-supervised method to eliminate
negative sentences from our corpus (e.g. labeling sentences
and classification of sentence vectors for example).

PolyNER achieves CDE performance using labels obtained
via active learning (UBS sampling strategy) and FastText vec-
tors. We attribute the increased performance to the character
embedding enhancement, which not only recognizes “poly”
(and yields more names based on this n-gram comparison),
but also filters out more anomalous candidates (preceding
or following polymer names) generated during tokenization
and missed by the filtering steps, such as “A,,B,” and
“Mw/Mn=1.36." In other words, the classifiers of character and
(context-based) word embedding vectors perform better than
classifiers of only context-based word embedding. Given this
result, one may wonder whether the active learning process it-
self could benefit from using this enhanced vector embedding.
To determine whether this is the case, we repeated the active
learning experiment using the entire corpus of NLP-filtered
candidates and classifying FastText (enhanced) vectors instead
of Gensim vectors at each round. However, the performance
was worse than random.

These results suggest that character-level information en-
hances classifier performance only once a certain threshold of
context information has been captured by the embedding. We
explain this observation as follows. In FastText, the portion of
the word embedding vector generated by using context varies
depending on how much context is available in the entire cor-
pus. For words deemed to have enough context, vectors do not
include any character-level information. At the other extreme,
for previously unseen words, the embedding is generated based
solely on character n-gram information and comparison to
other words in the corpus. During the active learning process,
candidates to be labeled by experts are selected by using
maximum-entropy-based uncertainty sampling: that is, words
for which prediction probability is similar for target and non-
target. Such candidates are more likely to lack context and
thus have vectors that use mostly character-level information.
As a result, the expert is often presented with nearly iden-
tical candidates (e.g., PS13k/PMMA12k, PS214k/PMMA12k,
PS31.6k/PMMA12k), which hinders the learning process as
these candidates are located in close vicinity in terms of the
full (character and context) word embedding space. In other
words, in this full space, while their uncertainty measure is
comparable, these examples are not diverse, where diversity
is a measure of the distance of the examples to each other or

1.0 ® CDE+
® CDE
® Rule-based
0.8
50.6
o
'S
]
&
0.4
0.2
0.0
0.0 0.2 0.4 0.6 0.8 1.0

Recall

Fig. 5: PR curve for KNN model trained with active learning
labels and word representations enriched with character-level
information. Results for CDE+ are also shown. Note: PR curves
are obtained by varying the threshold of probability that sepa-
rates classes; straight lines occur when several points have similar
probabilities and changing the threshold yields identical precision
to recall ratio.

previously labeled instances [47]. One solution to explore in
future work would be to impose a diversity constraint on the
candidates, for example by using batch active learning [48].
This will be part of broader plan to study the effect of quantity
(more documents) and quality (select paragraphs or sentences)
of data on the word embedding model and the final results.

VI. CONCLUSION

A lack of expert-annotated training data impedes the adop-
tion of machine learning techniques in certain scientific ap-
plications. PolyNER overcomes this challenge by using active
learning to target expert input so that accurate scientific named
entity recognition can be performed at low cost. We show that
by using NLP techniques, we can bootstrap a word vector
classifier of scientific entities. Using polyNER’s labels and
a classifier of character-enhanced word embedding vectors,
we achieve performance comparable to a best-of-breed hybrid
NER model (CDE+) that required much expert development.
In contrast, polyNER was trained on data annotated using just
five hours of expert time and a little untrained crowd input.
Our work highlights the potential for using minimal labeled
data and focused expert input to enable machine learning
techniques for previously unmined scientific entities. We are
currently exploring using polyNER-labeled data to annotate
text for other NER approaches, such as bidirectional long
short-term memory models. Our code and training dataset
will soon be available on DLHub [49] for the public to use
for training of machine learning models. Such resources can
be used along with other databases and dictionaries such as
PPPDB ! and Khazana [50] for validation purposes. We will
also formally explore the hybrid-computer partnership as an
optimization problem. In other words, we will work on a more
rigorous approach to automatic partitioning and assignment

IPolymer Property Predictor and Database: https://pppdb.uchicago.edu/

of extraction tasks in order to maximize the accuracy of
extracted data while minimizing the time and cost of human
involvement.

ACKNOWLEDGMENTS

This work was supported in part by NIST contract
60NANB15D077, the Center for Hierarchical Materials De-
sign, and DOE contract DE-AC02-06CH11357, and by com-
puter resources provided by Jetstream [51]. Official contribu-
tion of the National Institute of Standards and Technology; not
subject to copyright in the United States.

[1]

[2]

[3]

[4]

[5]

[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]
[18]

[19]

[20]
[21]

REFERENCES

Y. Song et al., “POSBIOTM-NER in the shared task of BioNLP/NLPBA
2004,” in International Joint Workshop on Natural Language Processing
in Biomedicine and its Applications, 2004, pp. 100-103.

M. Krallinger et al., “CHEMDNER: The drugs and chemical names
extraction challenge,” Journal of Cheminformatics, vol. 7, no. 1, p. S1,
2015.

J. J. de Pablo et al., “The Materials Genome Initiative, the interplay of
experiment, theory and computation,” Current Opinion in Solid State
and Materials Science, vol. 18, no. 2, pp. 99-117, 2014.

R. Leaman and G. Gonzalez, “BANNER: An executable survey of
advances in biomedical named entity recognition,” in Biocomputing,
2008, pp. 652-663.

Z. Zeng et al., “Survey of natural language processing techniques in
bioinformatics,” Computational and Mathematical Methods in Medicine,
2015.

L. Hawizy et al., “ChemicalTagger: A tool for semantic text-mining in
chemistry,” Journal of Cheminformatics, vol. 3, no. 1, p. 17, 2011.

T. Rocktidschel et al., “ChemSpot: A hybrid system for chemical named
entity recognition,” Bioinformatics, vol. 28, no. 12, pp. 1633-1640,
2012.

R. Leaman et al., “tmChem: A high performance approach for chemical
named entity recognition and normalization,” Journal of Cheminformat-
ics, vol. 7, no. 1, p. S3, 2015.

M. C. Swain and J. M. Cole, “ChemDataExtractor: A toolkit for auto-
mated extraction of chemical information from the scientific literature,”
Journal of Chemical Information and Modeling, vol. 56, no. 10, pp.
1894-1904, 2016.

S. R. Young et al., “Data mining for better material synthesis: The
case of pulsed laser deposition of complex oxides,” Journal of Applied
Physics, vol. 123, no. 11, p. 115303, 2018.

R. Tchoua et al., “Towards hybrid human-machine scientific information
extraction,” in 2018 New York Scientific Data Summit (NYSDS). 1EEE,
2018, pp. 1-3.

R. B. Tchoua et al., “Creating training data for scientific named entity
recognition with minimal human effort,” in International Conference on
Computational Science, 2019.

M. Buhrmester et al., “Amazon’s Mechanical Turk: A new source
of inexpensive, yet high-quality, data?” Perspectives on Psychological
Science, vol. 6, no. 1, pp. 3-5, 2011.

R. B. Tchoua et al., “Towards a hybrid human-computer scientific
information extraction pipeline,” in I3th International Conference on
e-Science, 2017, pp. 109-118.

J.-D. Kim et al., “Introduction to the bio-entity recognition task at
INLPBA,” in International Joint Workshop on Natural Language Pro-
cessing in Biomedicine and its Applications, 2004, pp. 70-75.

R. C. Hiorns et al., “A brief guide to polymer nomenclature,” Polymer,
vol. 54, no. 1, pp. 34, 2013.

J. Tamames and A. Valencia, “The success (or not) of HUGO nomen-
clature,” Genome Biology, vol. 7, no. 5, p. 402, 2006.

D. J. Audus and J. J. de Pablo, “Polymer informatics: Opportunities and
challenges,” ACS Macro Letters, vol. 6, no. 10, pp. 1078-1082, 2017.
E. F. Tjong Kim Sang and F. De Meulder, “Introduction to the CoNLL-
2003 shared task: Language-independent named entity recognition,” in
7th Conference on Natural Language Learning, 2003, pp. 142—147.

D. M. Jessop et al., “OSCAR4: A flexible architecture for chemical
text-mining,” Journal of Cheminformatics, vol. 3, no. 1, p. 41, 2011.
M. Krallinger et al., “Overview of the chemical compound and drug
name recognition (CHEMDNER) task,” in BioCreative Challenge Eval-
uation Workshop, vol. 2, 2013, p. 2.

[22]

(23]

[24]

[25]

[26]
[27]
[28]
[29]

[30]
[31]

[32]

[33]

[34]
[35]
[36]
(371
(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]
[49]
[50]

[51]

Z.-H. Zhou, “A brief introduction to weakly supervised learning,”
National Science Review, vol. 5, no. 1, pp. 44-53, 2017.

X. J. Zhu, “Semi-supervised learning literature survey,” University
of Wisconsin-Madison Department of Computer Sciences, Tech. Rep.
1530, 2005.

E. Agichtein and L. Gravano, “Snowball: Extracting relations from large
plain-text collections,” in 5th ACM conference on Digital libraries, 2000,
pp. 85-94.

S. Brin, “Extracting patterns and relations from the world wide web,” in
International Workshop on The World Wide Web and Databases, 1998,
pp. 172-183.

S. E. Peters et al., “A machine reading system for assembling synthetic
paleontological databases,” PLoS One, vol. 9, no. 12, p. e113523, 2014.
C. De Sa et al., “DeepDive: Declarative knowledge base construction,”
ACM SIGMOD Record, vol. 45, no. 1, pp. 60-67, 2016.

S. Auer et al., “Dbpedia: A nucleus for a web of open data,” in The
Semantic Beb, 2007, pp. 722-735.

K. Bollacker et al., “Freebase: A collaboratively created graph database
for structuring human knowledge,” in SIGMOD International Confer-
ence on Management of Data, 2008, pp. 1247-1250.

“Paleodb,” http://paleodb.org, accessed March, 2019.

A. J. Ratner et al., “Data programming: Creating large training sets,
quickly,” in Advances in Neural Information Processing Systems, 2016,
pp. 3567-3575.

D. D. Lewis and J. Catlett, “Heterogeneous uncertainty sampling for
supervised learning,” in [1th International Conference on Machine
Learning, 1994, pp. 148-156.

C. Campbell ef al., “Query learning with large margin classifiers,” in
17th International Conference on Machine Learning, 2000, pp. 111-
118.

H. S. Seung et al., “Query by committee,” in 5th Annual Workshop on
Computational Learning Theory, 1992, pp. 287-294.

H. T. Nguyen and A. Smeulders, “Active learning using pre-clustering,”
in 21st International Conference on Machine Learning, 2004, p. 79.

S. Dasgupta and D. Hsu, “Hierarchical sampling for active learning,” in
25th International Conference on Machine Learning, 2008, pp. 208-215.
S. Basu et al., “Active semi-supervision for pairwise constrained cluster-
ing,” in International Conference on Data Mining, 2004, pp. 333-344.
T. Mikolov et al., “Efficient estimation of word representations in vector
space,” arXiv preprint arXiv:1301.3781, 2013.

——, “Distributed representations of words and phrases and their com-
positionality,” in Advances in Neural Information Processing Systems,
2013, pp. 3111-3119.

R. Rehurek and P. Sojka, “Software framework for topic modelling with
large corpora,” in Workshop on New Challenges for NLP Frameworks,
2010.

J. D. Choi et al., “It depends: Dependency parser comparison using a
web-based evaluation tool,” in 53rd Annual Meeting of the Association
for Computational Linguistics, vol. 1, 2015, pp. 387-396.

F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825-2830, 2011.

P. Bojanowski et al., “Enriching word vectors with subword informa-
tion,” Transactions of the Association for Computational Linguistics,
vol. 5, pp. 135-146, 2017.

A. Joulin et al., “Bag of tricks for efficient text classification,” arXiv
preprint arXiv:1607.01759, 2016.

R. B. Tchoua et al., “A hybrid human-computer approach to the
extraction of scientific facts from the literature,” Procedia Computer
Science, vol. 80, pp. 386-397, 2016.

, “Blending education and polymer science: Semiautomated cre-
ation of a thermodynamic property database,” Journal of Chemical
Education, vol. 93, no. 9, pp. 1561-1568, 2016.

K. Brinker, “Incorporating diversity in active learning with support vec-
tor machines,” in 20th International Conference on Machine Learning,
2003, pp. 59-66.

B. Settles, “Active learning literature survey,” University of Wisconsin-
Madison Department of Computer Sciences, Tech. Rep., 2009.

R. Chard et al., “Dlhub: Model and data serving for science,” arXiv
preprint arXiv:1811.11213, 2018.

T. D. Huan et al., “A polymer dataset for accelerated property prediction
and design,” Scientific data, vol. 3, p. 160012, 2016.

C. A. Stewart et al., “Jetstream: A self-provisoned, scalable science and
engineering cloud environment,” 2015.

