See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/334783123

Publishing and Serving Machine Learning Models with DLHub

Conference Paper - July 2019

DOI: 10.1145/3332186.3332246

CITATIONS
0

9 authors, including:

i Ryan Chard
S ' Argonne National Laboratory

35 PUBLICATIONS 312 CITATIONS

SEE PROFILE

Zhuozhao Li
University of Virginia

29 PUBLICATIONS 176 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

ot XSearch: Distributed Indexing and Search in Large-Scale File Systems View project

Project PolyNER View project

All content following this page was uploaded by Ryan Chard on 13 August 2019.

The user has requested enhancement of the downloaded file.

READS
84

Logan Ward
Argonne National Laboratory

53 PUBLICATIONS 657 CITATIONS

SEE PROFILE

Yadu Babuji
University of Chicago and Argonne National Laboratory

19 PUBLICATIONS 74 CITATIONS

SEE PROFILE

ResearchGate

https://www.researchgate.net/publication/334783123_Publishing_and_Serving_Machine_Learning_Models_with_DLHub?enrichId=rgreq-fb978d454fb97a4ae9eb9d0a2b7096b7-XXX&enrichSource=Y292ZXJQYWdlOzMzNDc4MzEyMztBUzo3OTE0OTEwNTIwNjA2NzRAMTU2NTcxNzU4MDYwNw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/334783123_Publishing_and_Serving_Machine_Learning_Models_with_DLHub?enrichId=rgreq-fb978d454fb97a4ae9eb9d0a2b7096b7-XXX&enrichSource=Y292ZXJQYWdlOzMzNDc4MzEyMztBUzo3OTE0OTEwNTIwNjA2NzRAMTU2NTcxNzU4MDYwNw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/XSearch-Distributed-Indexing-and-Search-in-Large-Scale-File-Systems?enrichId=rgreq-fb978d454fb97a4ae9eb9d0a2b7096b7-XXX&enrichSource=Y292ZXJQYWdlOzMzNDc4MzEyMztBUzo3OTE0OTEwNTIwNjA2NzRAMTU2NTcxNzU4MDYwNw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/PolyNER?enrichId=rgreq-fb978d454fb97a4ae9eb9d0a2b7096b7-XXX&enrichSource=Y292ZXJQYWdlOzMzNDc4MzEyMztBUzo3OTE0OTEwNTIwNjA2NzRAMTU2NTcxNzU4MDYwNw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-fb978d454fb97a4ae9eb9d0a2b7096b7-XXX&enrichSource=Y292ZXJQYWdlOzMzNDc4MzEyMztBUzo3OTE0OTEwNTIwNjA2NzRAMTU2NTcxNzU4MDYwNw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ryan_Chard?enrichId=rgreq-fb978d454fb97a4ae9eb9d0a2b7096b7-XXX&enrichSource=Y292ZXJQYWdlOzMzNDc4MzEyMztBUzo3OTE0OTEwNTIwNjA2NzRAMTU2NTcxNzU4MDYwNw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ryan_Chard?enrichId=rgreq-fb978d454fb97a4ae9eb9d0a2b7096b7-XXX&enrichSource=Y292ZXJQYWdlOzMzNDc4MzEyMztBUzo3OTE0OTEwNTIwNjA2NzRAMTU2NTcxNzU4MDYwNw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Argonne_National_Laboratory?enrichId=rgreq-fb978d454fb97a4ae9eb9d0a2b7096b7-XXX&enrichSource=Y292ZXJQYWdlOzMzNDc4MzEyMztBUzo3OTE0OTEwNTIwNjA2NzRAMTU2NTcxNzU4MDYwNw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ryan_Chard?enrichId=rgreq-fb978d454fb97a4ae9eb9d0a2b7096b7-XXX&enrichSource=Y292ZXJQYWdlOzMzNDc4MzEyMztBUzo3OTE0OTEwNTIwNjA2NzRAMTU2NTcxNzU4MDYwNw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Logan_Ward5?enrichId=rgreq-fb978d454fb97a4ae9eb9d0a2b7096b7-XXX&enrichSource=Y292ZXJQYWdlOzMzNDc4MzEyMztBUzo3OTE0OTEwNTIwNjA2NzRAMTU2NTcxNzU4MDYwNw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Logan_Ward5?enrichId=rgreq-fb978d454fb97a4ae9eb9d0a2b7096b7-XXX&enrichSource=Y292ZXJQYWdlOzMzNDc4MzEyMztBUzo3OTE0OTEwNTIwNjA2NzRAMTU2NTcxNzU4MDYwNw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Argonne_National_Laboratory?enrichId=rgreq-fb978d454fb97a4ae9eb9d0a2b7096b7-XXX&enrichSource=Y292ZXJQYWdlOzMzNDc4MzEyMztBUzo3OTE0OTEwNTIwNjA2NzRAMTU2NTcxNzU4MDYwNw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Logan_Ward5?enrichId=rgreq-fb978d454fb97a4ae9eb9d0a2b7096b7-XXX&enrichSource=Y292ZXJQYWdlOzMzNDc4MzEyMztBUzo3OTE0OTEwNTIwNjA2NzRAMTU2NTcxNzU4MDYwNw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhuozhao_Li?enrichId=rgreq-fb978d454fb97a4ae9eb9d0a2b7096b7-XXX&enrichSource=Y292ZXJQYWdlOzMzNDc4MzEyMztBUzo3OTE0OTEwNTIwNjA2NzRAMTU2NTcxNzU4MDYwNw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhuozhao_Li?enrichId=rgreq-fb978d454fb97a4ae9eb9d0a2b7096b7-XXX&enrichSource=Y292ZXJQYWdlOzMzNDc4MzEyMztBUzo3OTE0OTEwNTIwNjA2NzRAMTU2NTcxNzU4MDYwNw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Virginia?enrichId=rgreq-fb978d454fb97a4ae9eb9d0a2b7096b7-XXX&enrichSource=Y292ZXJQYWdlOzMzNDc4MzEyMztBUzo3OTE0OTEwNTIwNjA2NzRAMTU2NTcxNzU4MDYwNw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhuozhao_Li?enrichId=rgreq-fb978d454fb97a4ae9eb9d0a2b7096b7-XXX&enrichSource=Y292ZXJQYWdlOzMzNDc4MzEyMztBUzo3OTE0OTEwNTIwNjA2NzRAMTU2NTcxNzU4MDYwNw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yadu_Babuji?enrichId=rgreq-fb978d454fb97a4ae9eb9d0a2b7096b7-XXX&enrichSource=Y292ZXJQYWdlOzMzNDc4MzEyMztBUzo3OTE0OTEwNTIwNjA2NzRAMTU2NTcxNzU4MDYwNw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yadu_Babuji?enrichId=rgreq-fb978d454fb97a4ae9eb9d0a2b7096b7-XXX&enrichSource=Y292ZXJQYWdlOzMzNDc4MzEyMztBUzo3OTE0OTEwNTIwNjA2NzRAMTU2NTcxNzU4MDYwNw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yadu_Babuji?enrichId=rgreq-fb978d454fb97a4ae9eb9d0a2b7096b7-XXX&enrichSource=Y292ZXJQYWdlOzMzNDc4MzEyMztBUzo3OTE0OTEwNTIwNjA2NzRAMTU2NTcxNzU4MDYwNw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ryan_Chard?enrichId=rgreq-fb978d454fb97a4ae9eb9d0a2b7096b7-XXX&enrichSource=Y292ZXJQYWdlOzMzNDc4MzEyMztBUzo3OTE0OTEwNTIwNjA2NzRAMTU2NTcxNzU4MDYwNw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Publishing and Serving Machine Learning Models with DLHub

Ryan Chard, Logan Ward, Zhuozhao Li, Yadu Babuji,
Anna Woodard, Steven Tuecke, Kyle Chard, Ben Blaiszik, and Ian Foster

Data Science and Learning Division, Argonne National Laboratory
Department of Computer Science, University of Chicago

ABSTRACT

In this paper we introduce the Data and Learning Hub for
Science (DLHub). DLHub serves as a nexus for publishing,
sharing, discovering, and reusing machine learning models.
It provides a flexible publication platform that enables re-
searchers to describe and deposit models by associating publi-
cation and model-specific metadata and assigning a persistent
identifier for subsequent citation. DLHub also supports scal-
able model inference, allowing researchers to execute inference
tasks using a distributed execution engine, containerized mod-
els, and Kubernetes. Here we describe DLHub and present
four scientific use cases that illustrate how DLHub can be
used to reliably, efficiently, and scalably integrate ML into
scientific processes.

1 INTRODUCTION

Rapid growth in the volumes and variety of observational
data and simulation output, plus the emergence of new data
analysis methods, such as those based on various forms of
deep learning, are producing remarkable new approaches to
science. For example, researchers are using such methods to
develop low-cost surrogates for expensive models [20], detect
extreme events in datasets [21, 22|, and inform real-time
experimentation [30]. Machine learning (ML) models pro-
vide a low-cost and efficient tool to rapidly evaluate a search
space, identify new experimental candidates, and process
large swaths of data with high degrees of accuracy. The po-
tentially revolutionary advantages of incorporating ML in the
scientific process is driving the need to facilitate model-in-the-
loop research. The model-in-the-loop paradigm is increasingly
necessary to make large scale scientific discovery both practi-
cal and affordable. However, there is a general lack of support
for deploying models for both low latency and high-assurance
inference, capable of serving sporadic scientific demands.

Instead, many researchers resort to ad-hoc solutions, wrap-
ping their models in custom Web services [8, 18] and repur-
pose code repositories for dissemination [27]. These custom
solutions are both time consuming to create and error prone
to operate. As ML becomes increasingly pervasive throughout
almost the entirety of scientific fields, the enormous aggregate
effort spent developing and operating these services in turn
spirals out of control.

In addition, the widespread use, comparative study, and
evolution of new ML methods is hindered by practical ob-
stacles such as inaccessible code and data, inconsistent data
formats, lack of documentation concerning implementation
approaches, and steep learning curves for associated tools.

DOI: 10.1145/3332186.3332246

The models and methods themselves may not be easily ac-
cessed, understood, or applied. An unfortunate consequence
of these various difficulties is that a researcher who reads
about a new method in a journal article can rarely apply
that method to new data or adapt the method for a new
purpose. In addition, scientific research presents a number
of unique requirements that are not necessarily applicable
in other domains. For example, it is important to associate
citation information, provenance, and usage tracking with
models such that researchers are given credit for their work.

We argue that these obstacles to scientific progress can
be overcome by establishing a Data and Learning Hub for
Science (DLHub) [15] that serves as a connection point be-
tween providers of data analysis and modeling methods and
associated data, on the one hand, and consumers of those
methods and data. For providers, DLHub makes it easy to
package up and publish individual data processing models,
pipelines linking multiple such models, and data used to test
and train such models and pipelines. For consumers, DLHub
makes it easy to discover previously published models, access
associated test and training data, run models on both test
data and new data, and adapt models for new purposes.

While other model repositories [6] and serving technolo-
gies [16, 24] have been developed, they fail to meet the need
to facilitate the publication and dissemination of ML ad-
vancements within the scientific community. Instead, serving
platforms focus on large scale serving for production use in
business operations, such as recommendation systems for
online shopping, while model repositories enable users to
download and run models locally. DLHub provides a nexus
for ML researchers. Enabling them to publish, find, and use
models by combining rich cataloging capabilities, fine-grained
access control, and high performance serving capabilities
along with the necessary computing infrastructure required
to use models and incorporate them in model-in-the-loop
research pipelines.

In the remainder of this paper, we first describe DLHub,
focusing on its architecture and capabilities, and briefly eval-
uate DLHub’s serving performance. We then outline four
scientific use cases that illustrate how DLHub is currently
used in practice. Finally, we summarize our experiences.

2 DATA AND LEARNING HUB FOR
SCIENCE

DLHub is comprised of two core components: a model repos-
itory and model serving system. DLHub’s model repository
allows users to publish, cite, discover, and reuse ML models
from a variety of domains. DLHub collects rich metadata

PEARC '19, July 28-August 1, 2019, Chicago, IL, USA

and combines search capabilities to enable users to discover,
access, and use published models. We leverage standard
metadata schemas to describe models including, common
publication metadata (e.g., author, title, date), descriptive
ML metadata (e.g., model type), and performance metadata
(e.g., accuracy when applied to common benchmarks). Model
metadata is stored in a flexible search index, built on Globus
Search [10], that allows users to query across all registered
metadata. DLHub also allows users to associate a persistent
identifier with a published model such that it can be cited
by other researchers.

Each model published into DLHub is dynamically con-
verted into a servable—an executable container that imple-
ments DLHub’s standard execution interface. These contain-
ers include all of the dependencies necessary to both invoke
the model as well as enable DLHub to serve the model for
on-demand inference. DLHub’s serving infrastructure pro-
vides a low-latency and scalable means of deploying and
invoking models using elastic computing infrastructure. This
serving infrastructure is built upon Parsl [12] and Kubernetes.
When users submit inference requests, DLHub uses Parsl to
provision execution containers on Kubernetes dynamically.
Each container includes a Parsl worker that DLHub subse-
quently uses to manage the execution of inference tasks in
that container.

2.1 Interfaces

DLHub implements Python SDK and CLI interfaces to make
it easy for model practitioners to publish, share, and invoke
models on-demand. Figure 1 illustrates the use of the SDK
to assemble a description of a model, publish the model in
DLHub, and invoke the model using an example from the
CANDLE project [31]. Both the SDK and CLI provide a
collection of helper functions to support the description of
models. Our basic approach is to generate as much meta-
data as possible and require users only complete templates
or particular metadata values. DLHub provides rich search
capabilities that enable the discovery of accessible models
using free-text and structured queries. Having discovered a
model, users can easily invoke the model by using the SDK to
marshal input data and call the model’s run function. DLHub
applies a fine grain access control model and tracks access
and usage on a per-modal basis. This allows researchers to
share models with a select group of users, or publicly if they
desire. The search index enforces these permissions thereby
restricting discovery to only those users permitted to view a
model.

2.2 Model Definitions

Fach servable is defined by a schema that captures its prove-
nance, computational environment, and its interface. Our
design for creating the schema was guided by two goals (1)
maximizing reuse of existing data models, and (2) minimizing
the learning curve for scientists unfamiliar with schemas. The
servable definitions both make the servable discoverable and

Chard et al.

provide a recipe for the DLHub serving infrastructure to
instantiate the servable.

We employ the DataCite [28] metadata schema to describe
the provenance of each servable. The DataCite schema allows
for capturing the authors, a human-understandable descrip-
tion of the application, and links to related artifacts (e.g.,
publications describing the model, training datasets).

The computational environment is described by the soft-
ware dependencies and files required to execute a servable.
Software dependencies are captured either by a user listing
the Python package dependencies in the schema, or listing
repo2docker [5] configuration files as dependencies. Files re-
quired by a servable are stored in the schema in a dictionary
as named files for those with a specific purpose (e.g., the
weights file of a Keras model) or simply must be present in
the environment (e.g., license information).

The interface description portion of the DLHub schema
includes information needed for humans to understand model
inputs/outputs, and for the DLHub web service to correctly
invoke the servable. The servable definition starts with the
type of function being served (e.g., a Python class method)
and information needed to load configuration files from disk
(e.g., serialization method for a scikit-learn model). Each
method supplied by the servable is defined by a human-
friendly free-form description and a controlled description
of the data types using a JSON-schema-like definition. The
method descriptions may also include information needed by
DLHub to construct the servable (e.g., module and name of
Python function).

Much of the information in the servable definition can be
extracted automatically. For example, the types and shapes of
the input arrays to a Keras Model are stored within the HDF5
model file saved by Keras. As shown in Figure 1, the DLHub
SDK reads all of this information from the HDF5 file so that
creating the minimal servable metadata needed for a Keras
model requires only 3 lines of code. We have built similar tools
around generated DataCite-compatible metadata, defining
the computational environment, and for describing different
types of servables (e.g., TensorFlow, Scikit-Learn).

2.3 Publishing Servables

The metadata and files that comprise a servable can be
published on DLHub via several routes. The most common
method is to send the data to DLHub via HTTPS. During
publication, the DLHub SDK packages all of the files listed
in the servable description and sends them to the DLHub
Web Service as a compressed archive. The web service then
generates a servable according to the recipe defined in the
servable description. First, a Docker container is created in
accordance to the repo2docker files included in the servable
description and is populated with the files included by the
user. The container is then supplied with a "shim" appropriate
to the type of servable (e.g., Keras Model) that is used to
generate a Python object with all of the methods described
in the servable description that can be invoked by the DLHub
executor. The container is then published to Amazon Elastic

Publishing and Serving Machine Learning Models with DLHub

PEARC '19, July 28-August 1, 2019, Chicago, IL, USA

0

Describe !:1]

m = KerasModel()
.create_model("plbl-example.h5")

3

dl = DLHubClient()

3

set_title("CANDLE Pilot 1 - Benchmark 1")
.set_name("candle_p1lb1")
.set_domains("genomics","biology","HPC")

3 3

@

Publish [|| Run

from dlhub_sdk.client import DLHubClient

dl.publish_servable(m)

®

aa
from dlhub_sdk.client import DLHubClient
dl = DLHubClient()
mid = dl.get_id_by_name("candle_p1b1")

data = np.load("pilotl.npy")
pred = dl.run(mid, {'data': [data.tolist()]})

Figure 1: Illustrative uses of DLHub Python APIs, here used to (1) assemble a description of a model, with relevant metadata;
(2) publish the new model to DLHub; and (3) invoke the published model.

Container Registry (ECR), where it readily-accessible by any
of the task manages. DLHub will be soon extended to accept
large models by downloading them via HTTP (e.g., from
Amazon S3) or transfering them from Globus endpoints.
DLHub also provides a GitHub-based workflow for publish-
ing models. In this model, users simply construct a GitHub
repository with a set of JSON-based metadata files. These
metadata files require only the standard DLHub servable
description to be saved in the root directory. Users may then
choose to register the repository in DLHub for subsequent
use. DLHub uses repo2docker to construct the servable and
follows the same registration process as described above.

2.4 Managing model serving

Figure 2 shows how DLHub’s model serving infrastructure
is used to execute inference tasks. DLHub separates the
repository and model serving REST service from the set of
execution resources used for inference. Execution resources
are represented by a DLHub Task Manager that is responsible
for deploying and managing servables deployed on computing
infrastructure. The figure shows how models are served by
connecting Task Managers with the DLHub Management Ser-
vice via low-latency message queues. These message queues
allow DLHub to transmit inference requests and input data,
or data references, to the Kubernetes-based serving infrastruc-
ture. There, requests are routed into the appropriate servable
using one of the available exzecutors. Requests are typically
served through a custom Parsl [12] executor; however, they
can also be served through model-specific execution frame-
works: SageMaker and TensorFlow Serving. Parsl provides
a general-purpose method of executing arbitrary models via
a low-latency and reliable execution model, which interfaces
with Kubernetes and manages servable deployments, includ-
ing scaling replicas. It also implements an inference cache to
improve model inference performance. At present, we have
deployed the Task Manager on a 14-node Kubernetes cluster,
called PetrelKube, hosted at Argonne National Laboratory.

2.5 Security

DLHub’s security model ensures all operations—f{rom publi-
cation to inference—are authorized and tracked for auditing
and accountability. DLHub relies on Globus Auth to provide
federated authentication and a common authorization frame-
work. Users can login with one of hundreds of supported
identity providers (e.g., institutions, ORCID, Google). Once
authenticated, the Management Service validates users’ cre-
dentials and acquires short-term access tokens to perform
authorized actions on their behalf. For example, the Manage-
ment Service will use a token to obtain profile information
about a user. It also uses a dependent token to access Globus
Transfer on the user’s behalf, thereby allowing DLHub to
download models and data as requested by users. The DLHub
service is also registered as a Globus Auth resource server
with it’s own scope. This allows developers to build upon
DLHub via secure programmatic invocation of its REST
APIs.

(cu J[sok)
REST }_ oMQ Task Manager
—
Model Model
: oMQ Task Manager
Repository Serving &
Executor Executor Executor
DLHub Management Service Sage TF
Parsl .
FTTTeoe Maker Serving
i Key
' @ Servable ! E é N
1 [Node E =

Figure 2: DLHub architecture. User requests, submitted via
REST, SDK, or CLI (upper left) can result in model publica-
tion in the Repository or the dispatch of serving requests to
servables deployed on any computing resources with a Task
Manager interface and appropriate executor(s) (lower right).

PEARC '19, July 28-August 1, 2019, Chicago, IL, USA

3 EVALUATION

To evaluate DLHub’s inference architecture we compare the
scalability and latency performance of the two Parsl execu-
tors used in DLHub: IPyParallel (IPP) and HighThroughput
(HTEX). The experiments were conducted on Argonne Na-
tional Laboratory’s PetrelKube, a 14-node Kubernetes cluster.
Each node is equipped with two E5-2670 CPUs, 128GB RAM,
two 300GB hard drives in RAID 1, two 800GB Intel P3700
NVMe SSDs, and 40GbE network interconnection. We use
the IPP and HTEX executors to deploy a “no-op” servable,
which returns “Hello World” when invoked.

To evaluate scalability we measure the completion time
to process 10000 inference requests of the “no-op” servable.
Figure 3 shows the completion time as the number of con-
currently deployed servables is increased from 1 to 512. We
observe that IPP has a much longer completion time than
HTEX, and the maximum throughputs (defined as the num-
ber of processed tasks per second) for IPP and HTEX are
342 and 1531 tasks per second, respectively. In addition, the
performance of both HTEX and IPP initially improves as
more servables are deployed. However, the benefits diminish
after 8 pods for HTEX and 4 pods for IPP. This is due to
the short execution time of the “no-op” servable. Longer
running servables typically benefit from more pods before
experiencing diminished performance improvements. IPP’s
performance is further degraded with more than 128 pods,
while HTEX’s performance remains consistent even with a
large number of pods. This is because the overheads asso-
ciated with managing more nodes starts to outweigh the
benefits of improved throughput.

105

L 1

s |

£]

)

S 10%

) i

1)]

o 1 HTEX

g 1 IPP
100 101 102 103

Number of pods

Figure 3: Scaling performance of IPP and HTEX.

We also measure the time for a single inference of the
“no-op” servable using each of the executors to evaluate their
latency properties. Figure 4 shows the latency distribution of
1000 repeated invocations. We observe that IPP has slightly
lower latency for a single inference than HTEX (7 ms on
average for IPP compared to 12 ms on average for HTEX).

In summary, IPP provides a slightly lower latency invoca-
tion model than HTEX, but is less scalable than HTEX.

Chard et al.

600- Emm HTEX
- == IPP
e
Q 400
=}
[on
g
w 2004
C | | | ’(-I_H I |
0 5 10 15 20

Latency (ms)

Figure 4: Latency performance of IPP and HTEX.

4 USE CASES

Initial usage of DLHub has focused on use cases at Argonne
National Laboratory and in particular those associated with
data stored in the Materials Data Facility (MDF) [13, 14]. We
briefly highlight four scientific use cases currently supported
by DLHub, including two related to materials science and
one focused on cancer research.

4.1 Band Gap Prediction from Optical Images

A recent publication by Stein et al. [29] presents a model
capable of predicting the material band gap and spectra from
color optical images (64x64 pixels). The work describes a vari-
ational autoencoder (VAE) trained on 180,902 optical absorp-
tion spectra and optical images prepared via high-throughput
experimental techniques. We analyzed these experimental
absorption spectra using multiple adaptive regression splines
(MARS) to locate the absorption onset to determine the
material band gap. We then trained two models: Model 1) an
autoencoder model implemented in Keras following the Stein
example with latent space of size (100) to encode the optical
images; and Model 2) a random forest regression model im-
plemented in ScikitLearn and trained using the latent space
from Model 1 as inputs and the band gaps determined by
MARS as the outputs.

We have deposited the associated models into DLHub to
encode an input image and output the latent space represen-
tation of the image. We have also deposited into DLHub the
random forest regression model that can predict the band gap
of the material given the latent space output. Together, these
models allow researchers to submit an optical image from the
Stein dataset to DLHub, encode the image and retrieve the
latent space representation and subsequently use that output
as input to the random forest regression model to obtain a
predicted band gap. This use case exemplifies the ability for
DLHub to enable researchers to validate published models,
to apply them to their own data, and to build upon them
by incorporating state-of-the-art ML techniques models into
their research flows.

Publishing and Serving Machine Learning Models with DLHub

4.2 Bulk and Shear Moduli Model
Benchmarking

It is typical that for any given materials property, such as
melting point or band gap, there may exist many models in
the literature that claim accurate predictive power. Often,
these models are trained and evaluated on specific materials
datasets, making it exceedingly difficult to effectively compare
models. In addition, when these models are presented in
literature, it is common for them to be discussed with regard
to their model implementation or architecture, training sets,
and their performance on a defined test set, yet rare for the
trained model to be made publicly available. This makes it
difficult to compare and contrast their capabilities.

DLHub provides a valuable tool for disseminating ML
findings. Not only can authors publish their models and
receive an associated persistent identifier they can include in
their manuscripts, they can also share the model with others
through the service. In addition, DLHub enables the direct
comparison of models that perform similar tasks.

Figure 5 shows a direct comparison of different models
derived from the literature. In particular, we examine the
work from De Jong et al. [17] to predict the bulk and shear
moduli from learned Holder means descriptors. Similarly, we
trained five models using different methods: linear regres-
sion, random forest regression, ridge regression, extra trees
regression, gradient boosting, and an ensemble model. In
this case, the ensemble model was the mean of each of the
top 3 performing models (random forest regression, extra
trees regression, and gradient boosting) by the validation
mean absolute error. We use DLHub to deploy each of these
models and then a simple Python script to invoke each model
with the same input data and record their predictions. The
figure demonstrates the different capabilities of the models,
and enables users to make informed decisions regarding their
accuracy. In addition, this example also shows that DLHub
provides a novel means for performing ensemble predictions
across multiple models.

4.3 Publication of Cancer Research Models

The Cancer Distributed Learning Environment (CANDLE)
project [31] is designed to address cancer research problems at
different biological scales. As part of the project researchers
are developing and training models to study problems at
the molecular, cellular, and population scales. To train these
models, CANDLE leverages leadership scale computing re-
sources at Argonne National Laboratory to rapidly perform
hyperparameter optimization.

DLHub provides a method for the models developed in
CANDLE to be securely published and served. For example,
DLHub currently serves deep learning models and bench-
marks that use cellular data to predict drug responses based
on molecular features of tumor cells and drug descriptors.
However, these models are still under development and re-
quire additional scrutiny from trusted collaborators before
being made publicly available. DLHub provides an ideal
mechanism to share these models with a selected group of

PEARC '19, July 28-August 1, 2019, Chicago, IL, USA

5
g4
=]
&=
k=
w
=
23
]
=]
g
: Linear Regression
. = Ridge Regression
« Random Forest Regression
= Extra Tree Regression
1 « Gradient Boosting

1 2 3 4 5
Predicted Value of log(K/G)

Figure 5: Using DLHub for prediction of bulk and shear mod-
uli. Data are sent as inputs to five distinct models to evaluate
and compare their performance.

users. Using DLHub’s fine grain access control model, re-
searchers can easily restrict access to a set of defined users
and incrementally expose models to new group over times.
Furthermore, when appropriate, users can make these mod-
els publicly accessible. DLHub’s authorization model means
that not only is model access restricted, but discovery is also
restricted to the same, or different, levels of use.

4.4 TomoGAN

Recent work by Liu et al. [23] demonstrated a generative
deep learning model, TomoGAN, that drastically improves
3D tomographs by reducing noise and eliminating artifacts.
The key advantage of TomoGAN is that it allows for quality
tomographs with only 1/16th of the normal X-ray dosage,
either by imaging using fewer 2D projections of an object
or with shorter exposure times. Improving the quality of
reconstructions with TomoGAN makes it possible to study
samples with fast dynamics or that are sensitive to X-ray
damage. DLHub makes it possible to bring this capability to
the general X-ray science community by hosting TomoGAN
as a web service.

The TomoGAN model was created using TensorFlow,
which means it only requires minor alterations to make it
servable. DLHub reads the same SavedModel directory as
TensorFlow Serving [25] and automatically generates a pub-
lishable model description from the files in that directory. As
illustrated in Figure 6, users can send images to DLHub via
HTTPS which will return a denoised image in less than a
few minutes processing. By offloading the TomoGAN we can,

PEARC '19, July 28-August 1, 2019, Chicago, IL, USA

in the future, reduce the processing time by, for example,
automatically parallelizing the evaluation of each frame or
optimizing batch size — all without changing the user inter-
face. In this way, DLHub will simplify deploying TomoGAN
as a seamless part of X-ray tomography experiments.

Noisy Image

HTTPS

DLHub $
+ TomoGAN -0

 (O)

Cleaned Image

Figure 6: Using DLHub to use TomoGAN to eliminate noise
from 2D projections.

5 RELATED WORK

Learning systems are defined as a system designed to support
any phase of the ML model lifecycle, be it development [7],
training [1], inference [16], or publication [3], to name a few.
Learning systems are rapidly being developed and evolved to
support the growing heterogeneity and pervasiveness of ML.
Here we describe relevant serving and repository learning
systems and compare their capabilities with DLHub.

Model serving platforms are essential to reliably and rapidly
delivering ML inference on-demand. Various approaches have
been taken to achieve ML serving, from hosted, cloud-based
solutions, such as SageMaker [1], to self-service platforms
such as Clipper [16]. SageMaker is a hosted platform provided
by Amazon designed to aid users in selecting algorithms, de-
veloping models, training at scale, and deploying them for
production use. Users can also export models as Docker con-
tainers for local use. Clipper on the other hand is a self-service
platform, where users deploy it on their own infrastructure.
Clipper is focused on low-latency invocation and provides
several optimizations to improve serving performance, such as
batching and memoization. However, both of these platforms
rely on dockerized model containers to encapsulate model
requirements, making them unsuitable for deployment on
many HPC platforms. TensorFlow Serving [26] is arguably
the most prominent inference platform. Using gRPC and
REST APIs, TensorFlow Serving provides a high perfor-
mance, low-latency solution for concurrently serving many

Chard et al.

ML models. Models are deployed by converting them to Ten-
sorFlow Servables. While some built-in transformations are
supported, TensorFlow Serving does not support arbitrary
transformation codes.

Model repositories present another area of learning systems
where providers aim to deliver services for aggregating models
and metadata such that users can discover and use models.
This process is typically achieved by establishing a service
to curate and publish model metadata and artifacts, such
as ModelHub [3] and Kipoi [11], or by communities agreeing
on a standard representation of a model [2]. DLHub aims
to bridge these two areas of learning systems by facilitating
self-publication of models and metadata while also providing
low-latency serving to use the models on-demand.

Describing a model is essential to being able to discover,
compare, and use them. Thus, model description tools are
essential to the creation of model repositories and robustly
deploying models in different platforms. The Open Neural
Network eXchange (ONNX) [4] is one such description tool.
ONNX is an open format for describing deep learning models
that makes it possible to transform models between different
tools (e.g., TensorFlow and Keras). Predictive Model Markup
Language (PMML) [19] is an XML-based model description
language that enables users and applications to exchange
models and programmatically interpret their requirements
and usage. Rather than focusing on describing the architec-
ture and learned parameters of a model, the DLHub schema
describes the purpose of the ML model, how to use it, and
the environment details. In that way, DLHub is closer to a
workflow /interface description language, such as CWL [9] or
Google’s protobuf. The DLHub schema also extends the inter-
face description language by including DataCite-compatible
provenance information to make models discoverable and
useful to scientific research communities.

6 SUMMARY

Model-in-the-loop is a rapidly developing trend with wide
ranging benefits including guiding experimentation, enhanc-
ing simulation campaigns, and ultimately reducing costs
associated with research and accelerating discovery. In this
paper we introduced DLHub, a service for publishing scien-
tific machine learning models and enabling their discovery
and use. We briefly described the DLHub architecture and
highlighted the ease by which models can be published and
used via the Python SDK. Finally, we described four use
cases that currently use DLHub and benefit from its ability
to make models discoverable, accessible, and servable. DLHub
is accessible at dlhub.org.

ACKNOWLEDGMENTS

This research used resources of the Argonne Leadership Com-
puting Facility, which is a DOE Office of Science User Facility
supported under Contract DE-AC02-06CH11357. This work
was also supported in part by NSF grant ACI-1148484. We
gratefully acknowledge the computing resources provided

dlhub.org

Publishing and Serving Machine Learning Models with DLHub

and operated by the Joint Laboratory for System Evaluation
(JLSE) at Argonne National Laboratory.

REFERENCES

(1]
(2]

[3

(10]

(11]

(12

(13]

(14]

(15

16

(17

(18]

[n. d.]. Amazon SageMaker. ([n. d.]). https://docs.aws.amazon.
com/sagemaker/latest/dg/whatis.html. Accessed April 10, 2019.
[n. d.]. Caffe Model Zoo. ([n. d.]). http://caffe.berkeleyvision.
org/model__zoo.html. Accessed April 10, 2019.

[n. d.]. ModelHub. ([n. d.]). http://modelhub.ai/. Accessed April
10, 2019.

[n. d.]. ONNX. ([n. d.]).
April 10, 2019.

[n. d.]. repo2docker. ([n. d.]). https://repo2docker.readthedocs.io.
Accessed April 10, 2019.

2019. ModelHub. (2019). http://modelhub.ai/. Accessed Febrary
20, 2019.

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy
Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey
Irving, Michael Isard, et al. 2016. TensorFlow: A system for
large-scale machine learning. In OSDI-16. 265-283.

Ankit Agrawal, Bryce Meredig, Chris Wolverton, Alok Choudhary,
and Computer Science. 2016. A Formation Energy Predictor for
Crystalline Materials Using Ensemble Data Mining. Proceedings
of IEEE International Conference on Data Mining (ICDM)
(2016), 1276-1279. https://doi.org/10.1109/ICDMW.2016.183
Peter Amstutz, Michael R. Crusoe, Nebojsa Tijani¢, Brad Chap-
man, John Chilton, Michael Heuer, Andrey Kartashov, Dan Leehr,
Hervé Ménager, Maya Nedeljkovich, and et al. 2016. Common
Workflow Language, v1.0. (Jul 2016). https://doi.org/10.6084/
m9.figshare.3115156.v2

Rachana Ananthakrishnan, Ben Blaiszik, Kyle Chard, Ryan
Chard, Brendan McCollam, Jim Pruyne, Stephen Rosen, Steven
Tuecke, and Ian Foster. 2018. Globus Platform Services for Data
Publication. In Proceedings of the Practice and Experience on
Advanced Research Computing (PEARC ’18). ACM, New York,
NY, USA, Article 14, 7 pages. https://doi.org/10.1145/3219104.
3219127

Ziga Avsec, Roman Kreuzhuber, Johnny Israeli, Nancy Xu, Jun
Cheng, Avanti Shrikumar, Abhimanyu Banerjee, Daniel S Kim,
Lara Urban, Anshul Kundaje, Oliver Stegle, and Julien Gagneur.
2018. Kipoi: Accelerating the community exchange and reuse of
predictive models for genomics. bioRziv 10.1101/375345 (2018).
Yadu Babuji, Anna Woodard, Zhuozhao Li, Daniel Katz, Ben
Clifford, Rohan Kumar, Lukasz Lacinski, Ryan Chard, Justin
Wozniak, Ian Foster, Michael Wilde, and Kyle Chard. 2019. Parsl:
Pervasive Parallel Programming in Python. In ACM International
Symposium on High-Performance Parallel and Distributed Com-
puting.

Ben Blaiszik, Kyle Chard, Jim Pruyne, Rachana Ananthakrishnan,
Steven Tuecke, and Ian Foster. 2016. The Materials Data Facility:
Data Services to Advance Materials Science Research. Journal
of Materials 68, 8 (2016), 2045-2052.

Ben Blaiszik, Logan Ward, Marcus Schwarting, Ryan Chard,
Jonathon Gaff, Daniel Evan Pike, Kyle Chard, and Ian Foster.
2019. A Data Ecosystem to Support Machine Learning in Ma-
terials Science. In Materials Research Society, Special Issue
Research Letter: Artificial Intelligence.

Ryan Chard, Zhuozhao Li, Kyle Chard, Logan T. Ward, Yadu N.
Babuji, Anna Woodard, Steven Tuecke, Ben Blaiszik, Michael J.
Franklin, and Ian T. Foster. 2019. DLHub: Model and data serving
for science. In 33rd IEEE International Parallel and Distributed
Processing Symposium.

Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J. Franklin,
Joseph E. Gonzalez, and Ion Stoica. 2017. Clipper: A Low-Latency
Online Prediction Serving System. In 14th USENIX Symposium
on Networked Systems Design and Implementation (NSDI). 613—
627.

Maarten De Jong, Wei Chen, Thomas Angsten, Anubhav Jain,
Randy Notestine, Anthony Gamst, Marcel Sluiter, Chaitanya Kr-
ishna Ande, Sybrand Van Der Zwaag, Jose J Plata, et al. 2015.
Charting the complete elastic properties of inorganic crystalline
compounds. Scientific data 2 (2015), 150009.

Eric Gossett, Cormac Toher, Corey Oses, Olexandr Isayev, Fleur
Legrain, Frisco Rose, Eva Zurek, Jests Carrete, Natalio Mingo,

https://github.com/onnx. Accessed

(19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

PEARC '19, July 28-August 1, 2019, Chicago, IL, USA

Alexander Tropsha, and Stefano Curtarolo. 2018. AFLOW-
ML: A RESTful API for machine-learning predictions of ma-
terials properties. Computational Materials Science 152 (sep
2018), 134-145. https://doi.org/10.1016/j.commatsci.2018.03.075
arXiv:1711.10744

Alex Guazzelli, Michael Zeller, Wen-Ching Lin, Graham Williams,
et al. 2009. PMML: An open standard for sharing models. The
R Journal 1, 1 (2009), 60-65.

Philip B Holden, Neil R Edwards, Paul H Garthwaite, and
Richard D Wilkinson. 2015. Emulation and interpretation of
high-dimensional climate model outputs. Journal of Applied
Statistics 42, 9 (2015), 2038-2055.

Thorsten Kurth, Jian Zhang, Nadathur Satish, Evan Racah, Ioan-
nis Mitliagkas, Md. Mostofa Ali Patwary, Tareq Malas, Narayanan
Sundaram, Wahid Bhimji, Mikhail Smorkalov, Jack Deslippe,
Mikhail Shiryaev, Srinivas Sridharan, Prabhat, and Pradeep
Dubey. 2017. Deep Learning at 15PF: Supervised and Semi-
supervised Classification for Scientific Data. In Proceedings of
the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC ’17). ACM, New York,
NY, USA, Article 7, 11 pages. https://doi.org/10.1145/3126908.
3126916

Yunjie Liu, Evan Racah, Joaquin Correa, Amir Khosrowshahi,
David Lavers, Kenneth Kunkel, Michael Wehner, William Collins,
et al. 2016. Application of deep convolutional neural networks for
detecting extreme weather in climate datasets. arXiv preprint
arXiv:1605.01156 (2016).

Zhengchun Liu, Tekin Bicer, Rajkumar Kettimuthu, Doga Gursoy,
Francesco De Carlo, and Ian Foster. 2019. TomoGAN: Low-Dose
X-Ray Tomography with Generative Adversarial Networks. iii
(2019), 1-17. arXiv:1902.07582 http://arxiv.org/abs/1902.07582
Christopher Olston, Noah Fiedel, Kiril Gorovoy, Jeremiah Harm-
sen, Li Lao, Fangwei Li, Vinu Rajashekhar, Sukriti Ramesh,
and Jordan Soyke. 2017. TensorFlow-Serving: Flexible, high-
performance ML serving. In 81st Conf. on Neural Information
Processing Systems.

Christopher Olston, Noah Fiedel, Kiril Gorovoy, Jeremiah Harm-
sen, Li Lao, Fangwei Li, Vinu Rajashekhar, Sukriti Ramesh,
and Jordan Soyke. 2017. TensorFlow-Serving: Flexible, high-
performance ML serving. arXiv preprint arXiv:1712.06139
(2017).

Christopher Olston, Noah Fiedel, Kiril Gorovoy, Jeremiah Harm-
sen, Li Lao, Fangwei Li, Vinu Rajashekhar, Sukriti Ramesh,
and Jordan Soyke. 2017. TensorFlow-Serving: Flexible, high-
performance ML serving. In 31st Conf. on Neural Information
Processing Systems.

Fang Ren, Logan Ward, Travis Williams, Kevin J. Laws, Christo-
pher Wolverton, Jason Hattrick-Simpers, and Apurva Mehta. 2018.
Accelerated discovery of metallic glasses through iteration of ma-
chine learning and high-throughput experiments. Science Ad-
vances 4, 4 (apr 2018), eaaql566. https://doi.org/10.1126/sciadv.
aaql566

Joan Starr and Angela Gastl. 2011. isCitedBy: A Metadata
Scheme for DataCite. D-Lib Magazine 17, 1/2 (jan 2011). https:
//doi.org/10.1045/january2011-starr

Helge S Stein, Dan Guevarra, Paul F Newhouse, Edwin Soedar-
madji, and John M Gregoire. 2019. Machine learning of optical
properties of materials—predicting spectra from images and images
from spectra. Chemical Science 10, 1 (2019), 47-55.

B. Wang, K. Yager, D. Yu, and M. Hoai. 2017. X-Ray Scattering
Image Classification Using Deep Learning. In 2017 IEEE Winter
Conference on Applications of Computer Vision (WACV). 697—
704. https://doi.org/10.1109/WACV.2017.83

Justin M Wozniak, Rajeev Jain, Prasanna Balaprakash, Jonathan
Ozik, Nicholson Collier, John Bauer, Fangfang Xia, Thomas Bret-
tin, Rick Stevens, Jamaludin Mohd-Yusof, Cristina Garcia Car-
dona, Brian Van Essen, and Matthew Baughman. 2017. CAN-
DLE/Supervisor: A Workflow Framework for Machine Learning
Applied to Cancer Research. In Computational Approaches for
Cancer Workshop.

https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html
https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html
http://caffe.berkeleyvision.org/model_zoo.html
http://caffe.berkeleyvision.org/model_zoo.html
http://modelhub.ai/
https://github.com/onnx
https://repo2docker.readthedocs.io
http://modelhub.ai/
https://doi.org/10.1109/ICDMW.2016.183
https://doi.org/10.6084/m9.figshare.3115156.v2
https://doi.org/10.6084/m9.figshare.3115156.v2
https://doi.org/10.1145/3219104.3219127
https://doi.org/10.1145/3219104.3219127
https://doi.org/10.1016/j.commatsci.2018.03.075
http://arxiv.org/abs/1711.10744
https://doi.org/10.1145/3126908.3126916
https://doi.org/10.1145/3126908.3126916
http://arxiv.org/abs/1902.07582
http://arxiv.org/abs/1902.07582
https://doi.org/10.1126/sciadv.aaq1566
https://doi.org/10.1126/sciadv.aaq1566
https://doi.org/10.1045/january2011-starr
https://doi.org/10.1045/january2011-starr
https://doi.org/10.1109/WACV.2017.83
https://www.researchgate.net/publication/334783123

	Abstract
	1 Introduction
	2 Data and Learning Hub for Science
	2.1 Interfaces
	2.2 Model Definitions
	2.3 Publishing Servables
	2.4 Managing model serving
	2.5 Security

	3 Evaluation
	4 Use Cases
	4.1 Band Gap Prediction from Optical Images
	4.2 Bulk and Shear Moduli Model Benchmarking
	4.3 Publication of Cancer Research Models
	4.4 TomoGAN

	5 Related Work
	6 Summary
	References

