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ABSTRACT
Amazon spot instances provide preemptable computing capacity at
a cost that is o�en signi�cantly lower than comparable on-demand
or reserved instances. Spot instances are charged at the current
spot price: a �uctuating market price based on supply and demand
for spot instance capacity. However, spot instances are inherently
volatile, the spot price changes over time, and instances can be
revoked by Amazon with as li�le as two minutes’ warning. Given
the potential discount—up to 90% in some cases—there has been
signi�cant interest in the scienti�c cloud computing community to
leverage spot instances for workloads that are either fault-tolerant
or not time-sensitive. However, cost-e�ective use of spot instances
requires accurate prediction of spot prices in the future. We explore
here the use of long/short-term memory (LSTM) recurrent neural
networks for spot price prediction. We describe our model and
compare it against a baseline ARIMA model using historical spot
pricing data. Our results show that our LSTM approach can reduce
training error by as much as 95%.
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1 INTRODUCTION
In order to �ll unused cloud compute capacity, Amazon Web Ser-
vices and other cloud providers o�er a tier of preemptable instance
types. Amazon’s preemptable tier, called spot instances, are allo-
cated according to a dynamic market model in which instances are
sold at a �uctuating “spot price.” �at is, running spot instances are
charged at the current spot price throughout their lifetime. When
provisioning spot instances, users may optionally specify the maxi-
mum price that they are willing to pay; however, this price serves
only to limit the cost incurred. Unlike on-demand instances, spot
instances may be terminated at Amazon’s discretion or if the spot
price exceeds the user’s maximum price.

Due to the preemptable nature of spot instances, the spot price
is o�en signi�cantly lower than the on-demand or reserved price
for the same instance type. However, this discount comes at the
cost of reliability—an instance can be terminated with only two
minutes notice—and thus spot instances are only suitable for ap-
plications that are fault-tolerant or are not time-sensitive. �ese
unique characteristics have made spot instances particularly a�rac-
tive in scienti�c computing scenarios as a way of obtaining elastic
resources at low cost [4]. We ourselves have used spot instances for
executing genomics [18], food security [20], brain imaging [3], and
social science [2] analyses. In each case, the automated provisioners
used to dynamically obtain and release spot instances [5] rely on
methods to predict spot prices to select the cheapest instance types
and schedule workload execution.

Researchers have explored a variety of methods to accurately pre-
dict spot prices, including parametric models [14, 15, 33], Markov
models [28, 34], and cost minimization approaches [9, 35]. Further-
more, there are many prediction mechanisms used to predict prices
in other markets (e.g., stock market, electricity market) such as
autoregressive integrated moving average (ARIMA) [7], general-
ized autoregressive conditional heteroskedasticity (GARCH) [12],
neural networks [16, 32], and many others. While many of these
methods are able to accurately model spot prices in some scenarios
they are not universally accurate, perhaps due to the fact that spot
prices are not driven solely by demand but rather by Amazon’s
introduction of hidden externalities that a�ect pricing [1].

In prior work we have shown that a time series-based approach
is well-suited to predicting spot prices for the purpose of providing
durability guarantees [33]. In this paper, we again treat the spot
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price as a time series and use a hybrid long/short term memory
(LSTM)-dense neural network architecture to predict spot prices in
the future. Speci�cally, we describe our three-layer network com-
posed of two LSTM layers and one dense layer to consolidate output
from the LSTM layers. To minimize the computational overhead
of training our model we explore the potential use of two prepro-
cessing steps that regularize prices and account for seasonality. We
evaluate our network architecture using historical spot pricing data
and compare the accuracy of our predictions against an ARIMA
model—which has been previously shown to perform well in spot
prediction [1, 33]. Our results show that our LSTM architecture can
accurately predict historical spot prices with average performance
up to 95% be�er than our baseline ARIMA model.

2 RELATEDWORK
A wide range of predictive models have been explored to predict
spot prices. For example, researchers have used parametric models
based on exponentials ��ed using Expectation-maximization (E-
M) [14, 15]; Constrained Markov Decision Processes to minimize
the expected cost of an instance, taking into account various costs,
including checkpointing and restart delays [28]; and organized the
problem as a cost minimization problem based on a Markovian
state model that estimates transition probabilities from spot price
histories [9]. Closely related prediction models have been devel-
oped to support application migration and checkpointing to avoid
service downtime [11, 22, 27]. In these cases, schedulers capable of
migrating services or applications use prediction models to predict
when instances will be terminated.

Li�le prior work has investigated the prediction of spot prices
using arti�cial intelligence. In fact, apart from our work, we have
found few other publications that investigate the application of
neural networks to spot price prediction [30, 32]. In the time since
these papers were published, neural networks have been applied
to playing retro video games [19], beating the masters of Go [24],
identifying cancerous tumors [10], listening to and generating raw
audio [31], and even beating Go without any previous knowledge
of the game [26] and then transferring what was learned to other
games such as chess and Japanese chess [25]. Recently, there has
been signi�cant interest in using neural networks for e�ective
prediction of stock market prices [23, 29]. Moving away from neu-
ral networks and towards spot price prediction, we see di�erent
time series analysis methods being applied to stock market predic-
tion [21, 23] and speci�cally to spot prices [6].

�e neural networks used in prior work would be considered
small by today’s standards, using only a simple multilevel percep-
tron type neural network with �ve input nodes, 10 hidden nodes,
and one output node [30]. In comparison, our network uses 64 more
advanced units and we are exploring models with over 250 input
nodes and nearly 3,000 total nodes. Furthermore, prior e�orts have
focused on using a recurrent neural network, where outputs from
each node in a directed line feed to the next, whereas we explore
a hybrid architecture that combines elements of the traditional re-
current neural network [13] with traditional fully connected dense
layers (i.e., multilevel perceptrons). Advances in computational
hardware and so�ware have enabled us to explore such complex
and extensive architectures, while seeing similar training times for

our most complex models (⇠13 hrs. on 2x Nvidia Tesla P100s) as
the much simpler models from several years ago.

3 BACKGROUND
Amazon EC2 o�ers computing capacity as prede�ned “instance
types.” �e instance type de�nes the resources available to a par-
ticular instance in terms of CPU, memory, and storage. Instance
types are organized into various families such as general purpose,
compute optimized, memory optimized, storage optimized, and
accelerated computing. A particular instance type is named accord-
ing to its family and its relative resource capacity. For example,
c3.2xlarge is a ��h generation, compute optimized instance type
with 8 vCPUs, 15 GB of RAM, and user-con�gurable block storage.

Amazon organizes instances into independent regions, each with
a number of independent availability zones. Regions represent geo-
graphically separated data centers and availability zones represent
physically separated resources within those data centers. When
provisioning resources, users must select a region, availability zone,
and instance type. While all users see the same region names, avail-
ability zones are arbitrarily named for each user to avoid users
overloading a single availability zone.

Amazon creates a spot market for each instance type, availability
zone, and region. Prior to November 2017, the spot market required
that users place a bid—the maximum value they were willing to
pay for a particular instance type—to acquire spot instances. Pe-
riodically Amazon ordered current bids and recalculated the spot
price based on available capacity. Bids above the spot price were
allocated instances, while those below the spot price were not. Any
running instances with bids below the current spot price could be
terminated. �us, the spot price was directly related to revocation
and therefore users aimed to compute a bid price that was above
the spot price (in order to avoid revocation) but not signi�cantly
so (to reduce �nancial risk). In November 2017, the spot market
was updated such that users are no longer required to specify a bid.
Instead, spot prices are set by Amazon and adjust gradually based
on long-term trends in supply and demand. Users simply pay the
spot price for an instance at the given time and instances may be
revoked entirely at Amazon’s discretion (rather than based on the
user’s maximum price). However, from a user’s perspective, the
existence of an optional maximum price is similar to the previous
bidding model.

Amazon provides up to three months of price histories for each
instance type, availability zone, and region. �is information pro-
vides a basis from which one can try to forecast prices and derive
pa�erns. An example of the price history for the c3.2xlarge in-
stance type in the us-east-1, us-west-1, and us-west-2 regions is
shown in Figure 1. �is �gure highlights the signi�cant savings
(compared to on-demand instances) possible in the spot market.
It also shows the variability of the spot price within and between
availability zones.

In order to improve prediction accuracy and our ability to apply
machine learning models, we have collected spot pricing data from
multiple sources spanning 3 years, with data for all instance types
and availability zones in the US regions for the past year. �is data
is stored as “tick” data: it only includes a point in the series when
the price changes from the previous price.
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Figure 1: Spot price history for c3.2xlarge instances from
September 3, 2016 to September 10, 2016 in three US regions.
Each series represents a di�erent availability zone.

4 SPOT PRICE PREDICTION
In this paper we aim to predict the spot price for a particular in-
stance type, availability zone, and region for a speci�c time in the
future. Speci�cally, we aim to predict the price using prior histories
from all regions, availability zones, and instance types. Given the
relative complexity of this task and the potential for many latent
features to in�uence the spot price (e.g., seasonality, relationships
between instance families, resource supply, etc.) we investigate if
recurrent neural networks (RNNs) can provide be�er accuracy than
standard statistical approaches. RNNs are becoming increasingly
popular as a means of modeling time series data such as meteoro-
logical data and stock prices. For our task, we use long/short-term
memory (LSTM) as the main building blocks of the RNN. LSTMs are
able to identify and remember latent features over an unspeci�ed
number of time periods, making them a versatile tool in time series
prediction.

RNNs, just like other neural networks, are speci�ed as a combi-
nation of various parameters such as number and type of layers as
well as activation functions. Hence, a necessary step in building
RNNs is a systematic evaluation of these parameters to �nd the
best combination for the given task. In addition to specifying the
RNN parameters, the input data for RNNs (and neural networks in
general) is o�en pre-processed into a format that makes it easier
for RNNs to generate good predictions. Hence, in the remainder
of this section we describe these model speci�cation steps: our
hyperparameter selection, the resulting network structure, and the
preprocessing steps considered to transform our input data.

4.1 LSTM hyperparameter selection
�e number and type of layers is a fundamental architecture de-
cision for a neural network. To select our network architecture
for the given task, we performed a simple grid search over a range
of potential network architectures. Speci�cally, we systematically
varied the number of LSTM layers in the network (from 1 to 4), and
the width of each LSTM layer (from 16 to 128 nodes). Each neural

Figure 2: Training MSE (USD squared) a�er ten epochs of
training each combination of LSTM width and depth.

network had an additional dense layer for consolidation a�er the
given number of LSTM layers.

Figure 2 shows the loss function for these combinations of LSTM
layers and widths of each LSTM layer. Based on this analysis we
identi�ed the relatively small, three-layer solution with two LSTM
layers and a dense layer for consolidation to show the most promise.
Note: for this analysis, we did not use a mini-batch training method
such as to reduce variation between training and validation error,
given the computational requirements to do so.

4.2 Network structure
Based on our previous hyperparameter selection, our �nal RNN
incorporates elements from both LSTM and dense neural networks.
As illustrated in Figure 3, we use a simple, three-layer network
composed of two LSTM layers—each 32 units wide—and one dense
node to consolidate input from the second LSTM layer to a �nal
predicted value. We chose the LSTM unit to comprise the primary
layers of our neural network model due to the temporal element of
our data and regression problem, as well as the bene�ts of LSTM
over other types of RNNs. Like other RNNs, the LSTM units can
be assembled into layers of the neural network that are able to
accept data sequentially (i.e., the data is processed through each
unit such that the previous data point is able to be related to the
last). �e advantage held by LSTM over traditional RNNs is that it
possesses three internal “gates” that allow it to explicitly forward
or forget data, allowing it to relate data from point to point and
“forget” earlier relations over a certain period within the sequence,
if these earlier relations turn out to be irrelevant. �is functionality
provides a mechanism to use information from surrounding inputs
to a�ect a given input while still remaining una�ected by inputs
more distant.

To train our neural network, we used the ADAM optimization
algorithm [17] with Nesterov momentum [8] and Mean Square
Error as our loss function.
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Figure 3: Our neural network architecture composed of two
LSTM layers and a dense node to consolidate output.

4.3 LSTM data preprocessing
Our neural network is designed to process tick-level data (as given
by the spot price history), rather than points for every time period.
We choose to use tick-level data as it is less computationally in-
tensive to train while still providing a strong pricing signal to our
network. To further minimize the computational overhead of train-
ing we investigate two forms of preprocessing to our input data.
One method regularizes pricing data relative to the on-demand
price; the other applies exponential smoothing to regularize data
for seasonal pa�erns.

In order to allow for greater generalizability of the model to
di�erent spot price series, we have a�empted to regularize our data
by transforming the raw data into a percentage of the on-demand
price. �is allows us to be�er expand one optimal solution from one
instance type in one region to all instance types in all regions. While
the price of a spot instance does not vary directly with on demand
price (i.e., some instance types are in higher demand than others),
this allows the network to work with data that are much more
similar in terms of actual value. For example, imagine one instance
type that is in low demand but very expensive such that the on
demand price is $10/hr and the mean spot price is around 20% of this
value ($2/hr). Imagine another less expensive instance type in high
demand such that the on demand price is $0.50/hr and themean spot
price is 60% of this value ($0.30/hr). It is much less computationally
expensive to retrain a network from values between 0.1 and 0.3 to
values between 0.5 and 0.7 than it is to retrain a network from values
around 10 to values around 0.5. Additionally, in the retraining
process, we are much more likely to be marginally altering the
speci�c weighting than we are to be completely reorganizing the
function of the network.

�e second preprocessing step we explore looks at seasonal reg-
ularization at di�erent levels (day, week, year) using Holt-Winters

exponential smoothing. �is preprocessing step represents a well-
tested approach for removing regular and easily quanti�able sea-
sonal trends so that the network itself can focus on predicting more
irregular trends of the time series. �is seasonal regularization also
reduces the computational requirements of the network as it does
not have to learn these broad trends.

5 EVALUATION
We used historical Amazon spot pricing data to evaluate our neural
network and to compare its performance against that of a base-
line statistical model—Autoregressive Integrated Moving Average
(ARIMA)—which has been shown to perform well for spot price
prediction [1, 33]. We �rst describe our input dataset and then
investigate the training performance of our network and the com-
parative accuracy of both ARIMA and our network on our historical,
not preprocessed, spot pricing data. Finally, we explore the e�ect
of data preprocessing on accuracy.

When reporting on forecast accuracy, we use the Mean Square
Error (MSE), de�ned as:

mean

 ’
t

(actualValuet � predictedValuet )2
!

We use MSE as our primary metric for evaluation as it is the
loss metric we used to train our network. We also report on the
Mean Absolute Percentage Error (MAPE), Root Mean Square Error
(RMSE), and Mean Absolute Error (MAE).

5.1 Dataset
In order to validate the use of neural networks for spot price pre-
diction, we arbitrarily picked a single instance type from our his-
torical pricing data: the c3.2xlarge Linux instance type from the
us-east-1b region between September 3, 2016 and September 10,
2016 (as shown in Figure 1). Note: we used historical data as, at the
time of this study, there was not su�cient pricing data available
from the new spot market. To make the network computationally
tractable, so that we could explore di�erent network architectures,
we used a subset of 10,000 points (roughly six days) for training
and held back the following 2,000 points (roughly two days) for
validation. While this data represents a relatively small sample, and
only considers a single instance type, availability zone, and region,
we believe that it is su�cient to provide initial validation of the
bene�ts of LSTM models.

We de�ne our prediction task as follows: given 50 input obser-
vations, forecast the spot price for the subsequent 50 periods (i.e.,
predict the next 50 observations). We chose 50 observations for this
analysis as it represents a window of approximately one hour. For
each of these 50 input points, the ARIMA method creates and trains
a new model to generate the output of the next 50 predictions; for
our neural network, we trained on the 10,000 points for 250 epochs
and then applied the model to sequences of 50 input points in the
validation dataset.

5.2 Baseline: ARIMA
We use the ARIMA method to produce a baseline prediction. An
ARIMA model for forecasting univariate time series data can be
parameterized through three a�ributes, (p, d , q), where p is the



Predicting Amazon Spot Prices with LSTM Networks ScienceCloud’18, June 11, 2018, Tempe, AZ, USA

Figure 4: Training MSE (USD squared) over 250 epochs.

number of autoregressive terms, d the number of di�erentiation,
and q the order of the moving average. Selecting appropriate val-
ues for p, d , and q depends on the particular time series. For the
subsequent evaluation, we used the auto.arima functionality of R
to automatically compare several parameterizations and select the
parameter combination with the lowest forecast error. We con�g-
ured the ARIMA model to use a training window of historical data
(here: 50 observations) and forecast the next time periods (here:
50 predictions). In general, longer training windows and shorter
forecast windows lead to a more accurate forecast.

5.3 Training and validation of LSTM
A�er exploring various network architectures, we trained our three-
layer LSTM network on the 10,000 input data points for 250 epochs.
Figure 4 shows the training loss function for this dataset. �e dis-
concerting spikes are caused by the NADAM optimization function
we used. Spikes are common with ADAM and are potentially exag-
gerated via NADAM’s Nesterov (N) momentum component. We
achieve an in-data training MSE of 7 ⇥ 10�6. (A validation error
of 9 ⇥ 10�6 was achieved when training on the same data split by
Tensor�ow with one-third of the data used for validation.) �ese
results were achieved without preprocessing.

5.4 Forecast accuracy
We now compare the accuracy of our neural network with the
ARIMA model. Figure 5 shows the predictions of both models as
well as the actual c3.2xlarge series. Both models track the actual
data fairly accurately. Figure 6 shows the MSE for each model on
each point. While the errors look similar, the neural network is
clearly more accurate than the ARIMA model. �e MSE over our
2,000 point validation set was 1.7⇥10�5 for the neural network and
4.2 ⇥ 10�5 for ARIMA. Additionally, the Mean Absolute Percentage
Error (MAPE) for the ARIMA and LSTM models were 3.76% and
3.35%, respectively. In Table 1 we report Root Mean Square Error
(RMSE) and Mean Absolute Error (MAE). In both cases the LSTM
model is more accurate than the ARIMA model.

Figure 5: Prediction of the 2,000 point validation set using
the ARIMA and LSTM models. Actual data included for ref-
erence.

Figure 6: MSE of both ARIMA and LSTM models where a
value of “0” would represent a perfect prediction.

Table 1: Root Mean Square Error and Mean Absolute Error
for the ARIMA and LSTM models in cents (USD).

ARIMA LSTM

RootMean Square Error (RMSE) 0.557 0.423
Mean Absolute Error (MAE) 0.362 0.320

5.5 LSTM with preprocessing
Our preprocessing steps aim primarily to reduce the computational
requirements for training; however, they might also a�ect accuracy.
To evaluate their e�ect on accuracy we retrained the neural net-
work twice, each time using one preprocessing method. �e price
regularization method provided no increase (and no decrease) in
accuracy. �is was expected as this method was intended to reduce
training cost by allowing generalizability across many instance
types. �e seasonal regulation, however, did a�ect accuracy. In this
case, using Holt-Winters exponential smoothing, we were able to
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achieve a training MSE of 6.98 ⇥ 10�6—a small improvement over
the same network without this preprocessing. �is result indicates
that the neural network is able to detect a small seasonal trend in
the data.

6 SUMMARY
Accurate prediction of spot prices can reduce the cost of using
spot instances. Our preliminary investigation of a neural network-
based approach shows signi�cant promise for accurately predicting
spot prices. Using a three-layer LSTM-based network trained on
a 10,000 point dataset of historical spot prices, we observed an
average reduction in Mean Square Error of 60% and up to 95% in
some cases, when compared with the baseline ARIMA model. �is
signi�cant reduction suggests that the LSTM model is well suited
for predicting spot prices. Such a reduction in error equates to
roughly one-half cent per tick for this data and instance type. In
other words, our LSTM predictions could allow a user to accurately
estimate one-half cent closer to the actual bid price on average. For
example, a user with a 12 hour allocation of the c3.2xlarge instance
type could reduce their expected cost by approximately $5.

�e recent changes to the spot market have modi�ed not only
the market behavior but also the motivation for predicting spot
prices. Users no longer need to calculate a bid for optimal provi-
sioning and the prices are less volatile due to arti�cial smoothing.
�ese changes are perhaps due to the increasing accuracy of spot
prediction methods as highlighted by this paper. We believe that
LSTM-based approaches (like that presented here) will also be ap-
plicable in the new spot market as a way of predicting prices further
into the future. �us, in future work we �rst aim to explore the
application of LSTM networks to the new spot market. In particular,
we are interested in exploring more complex network architectures
and using larger training sets across many instance types, avail-
ability zones, and regions. Our initial experimentation, albeit with
what is now old data, using larger datasets indicates that more
complex network architectures might well improve performance.
For example, we observed the best performance in our experiments
on a larger dataset using a network composed of �ve layers: a �rst
LSTM layer, two dense layers, a second LSTM layer, and a �nal
dense layer. Finally, predicting spot prices is only the �rst step in
making decisions about how to act in a spot price market in general.
�us, we intend to integrate our LSTM-based prediction models
into a decision framework that can help users make decisions in
the spot market.
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