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Abstract— Many interesting geospatial datasets are publicly
accessible on web sites and other online repositories. However,
the sheer number of datasets and locations, plus a lack
of support for cross-repository search, makes it difficult for
researchers to discover and integrate relevant data. We describe
here early results from a system, Klimatic, that aims to
overcome these barriers to discovery and use by automating
the tasks of crawling, indexing, integrating, and distributing
geospatial data. Klimatic implements a scalable crawling and
processing architecture that uses an elastic container-based
model to locate and retrieve relevant datasets and to extract
metadata from headers and within files to build a global index
of known geospatial data. In so doing, we create an expansive
geospatial virtual data lake that records the location, formats,
and other characteristics of large numbers of geospatial datasets
while also caching popular data subsets for rapid access. A
flexible query interface allows users to request data that satisfy
supplied type, spatial, temporal, and provider specifications;
in processing such queries, the system uses interpolation and
aggregation to combine data of different types, data formats,
resolutions, and bounds. Klimatic has so far incorporated more
than 10,000 datasets from over 120 sources and has been
demonstrated to scale well with data size and query complexity.

I. INTRODUCTION

New sensors, simulation models, and observational pro-

grams are producing a veritable deluge of high quality

geospatial data. However, these data are often hard for re-

searchers to access, being stored in independent silos that are

distributed across many locations (e.g., consortium registries,

institutional repositories, and personal computers), accessible

via different protocols, represented in different formats (e.g.,

NetCDF, CSV) and types (e.g., vector, raster), and are in

general, difficult to discover, integrate, and use [1]. These

challenges are none more evident than in environmental and

climate science. Here, vast collections of data are stored in

dark, heterogeneous repositories distributed worldwide.

We aspire to make these large quantities of geospatial

data accessible by creating the virtual data lake, a cached

subset of a data lake paired with additional metadata for

non-cached datasets. A data lake is “a centralized repository

containing virtually inexhaustible amounts of raw (or mini-

mally curated) data that is readily made available anytime to

anyone authorized to perform analytical activities” [2]. Such

a system allows for the local caching of raw data in a stan-

dardized format, making integration and distribution more

efficient at query-time. A geospatial data lake should allow

for the straightforward alignment of spatial and time-based
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variables, and be able to manage and integrate heterogeneous

data formats. Given the huge quantity of geospatial data, we

extend the data lake model to encompass a metadata index

of all processed data and the use of our virtual lake as a

cache for popular raw data. This approach allows for the

tracking of less popular datasets without giving up valuable

performance and space availability for oft-accessed data.

To explore these ideas, we have prototyped Klimatic, a

system for the automated collection, indexing, integration,

and distribution of big geospatial data. Although there is

prior research in both geospatial metadata extraction and

data lakes, to the best of our knowledge this is the first

example of a centralized, searchable index across disparate

web-accessible resources, combined with a virtual lake cache

for raw data. We adopt a scalable crawling and metadata

extraction model, using a dynamic pool of Docker contain-

ers [3] to discover and process files. Thus, we pave the way

for creation of a scalable system that has the capacity to scour

an increasing number of available resources for geospatial

data. To further reduce usage barriers, Klimatic supports the

integration of heterogeneous datasets (in both file type and

format) to match users’ queries, while also ensuring data

integrity [4], [5].

The rest of this paper is as follows. §II discusses chal-

lenges associated with the creation of a geospatial virtual

lake. §III outlines Klimatic’s architecture and implementa-

tion. §IV explores the data collected in Klimatic. §V dis-

cusses related work. Finally, §VI summarizes the impact of

Klimatic while illuminating future research and applications.

II. CHALLENGES

Geospatial data are stored in a variety of repositories,

many accessible via HTTP or Globus GridFTP. Globus

is a service-based research data management system that

provides access to more than 10,000 storage systems (called

“endpoints”), many of which are used for storing scientific

data. Automating the collection and indexing of all geospa-

tial data stored on Globus endpoints and the web would be of

great benefit to researchers. However, this task is not without

significant challenges, as we now discuss.

Discovery: Klimatic needs a way to discover and explore

data stored across an extremely large number of storage

systems. It must do so in such a way that file paths can be

stored for purposes of data provenance and re-examination

at a later time. Klimatic therefore requires a crawler that

can scale to many sites and datasets. It needs to be able

to identify potentially relevant datasets, for example by

looking for relevant file extensions (e.g., .nc and .csv). For
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each dataset identified, it needs to be able to introspect on

its contents, which requires interfaces that support data in

different formats accessible via different APIs. It must also

be able to determine quickly whether the dataset already

exists in the virtual data lake, and decide whether to cache

or discard the dataset.

Indexing: Once Klimatic places a dataset in the Docker

container it needs to acquire descriptive metadata that can

identify datasets satisfying user-specific search criteria. Ad-

ditionally, Klimatic must establish indices that allow users

to quickly filter data by means of metadata. Metadata may

be found in file names, in structured file headers, or within

the file body. Thus, we require a flexible indexing model that

can not only identify these metadata, but also allow for many

geospatial queries while tracking provenance.

Integration: The purpose of our approach is to create a

flexible virtual data lake from which users may retrieve not

only individual datasets but also integrated datasets defined

by a specification such as “all temperature measurements

for the region (30W to 32W, 80N to 82N) for the period

of January, 2016.” It must process such requests efficiently,

while also upholding the data’s integrity. Geospatial data

are particularly complicated to integrate as heterogeneous

collection methods result in different representations (e.g.,

raster vs. vector) and different granularities (e.g., spatial and

temporal). Furthermore, the units used to represent common

data may be different (or even missing). Thus, Klimatic must

effectively manage misalignments between datasets to curate

a new dataset with near-equal integrity to its ancestors.

Ensuring integrity: Given the integrative nature of Kli-

matic, a number of geospatial integrity rules must be fol-

lowed when integrating multiple geo-spatial datasets into

one. These constraints include topological, semantic, and

user-defined integrity constraints [4], [5], [6]. Topological

constraints require that data be divided into mutually ex-

clusive regions with all space covered. Semantic constraints

require that geological relationships are maintained, mean-

ing, for example, that a road cannot exist in the same

space as a building. Finally, user-defined constraints require

that data are minimally affected following post-processing.

Additionally, integrated data should include information that

tracks data lineage. If a dataset cannot fit these constraints,

the user is asked whether to reject the integrated dataset.

III. POPULATING THE VIRTUAL DATA LAKE

The Klimatic architecture implements a three phase data

ingestion pipeline to populate the virtual data lake: (1)

crawling and scraping publicly accessible data, (2) extracting

metadata and building a discovery index, and (3) loading data

into virtual data lake storage.

A. Crawling and Scraping

The first step in the Klimatic pipeline works to identify

and then download publicly accessible geospatial files. To

provide scalability, we use an elastically scalable pool of

crawler instances, implemented as Docker containers, each

Fig. 1. Workflow for Klimatic’s metadata extraction and storage.

repeatedly retrieving a URL from a crawling queue, retriev-

ing and processing any content at that address, and adding

any new URLs identified during processing to the queue.

Figure 1 illustrates this phase of the workflow.

Klimatic can initially retrieve data via either HTTP or

GridFTP. In each case, our crawler looks for the commonly

used NetCDF (.nc) [7] and CSV formats. The process by

which the crawler discovers these datasets is dependent on

the target repository.

For HTTP-accessible repositories, we seed the crawling

queue with common repositories for geospatial data, such

as the National Oceanic and Atmospheric Administration

(NOAA) and the University Corporation for Atmospheric

Research (UCAR). Using these links as an initial base, the

crawler then explores those web sites and other linked web

sites by scouring the links within pages. As a result of this

crawling process, a list of datasets (with associated URLs)

is appended to a second extraction queue. We have used this

method to discover more than 10,000 climate files.

For GridFTP-accessible data, we use Globus APIs to seed

the crawling queue with endpoints that analysis of access

control lists show to be publicly accessible. The crawler then

explores those endpoints recursively, filtering files by format

and appending matching files to the extraction queue. Our

crawler has so far identified 441 geospatial datasets, mainly

in CSV format, residing on Globus endpoints.

The final challenge associated with the crawling phase is

to determine whether files contain relevant spatial data, as

well as dealing with false-positive datasets (i.e., datasets that

seem to have spatial data during a scan, but do not). As

NetCDF files contain structured headers (with time- and area-

based keys) and raw data in-file, filtering NetCDF files for

relevant metadata is straightforward. However, this task is

more difficult when analyzing CSV files. To test whether

a CSV file contains spatial data, the program checks for

a number of pre-determined geo-spatial keys (e.g., ‘lon,’

‘lons,’ ‘long,’ ‘lng,’ and ‘longitude’ for a longitude variable)

in the first two rows of each column. If such keys are

found, metadata are extracted. We have found that fewer

than 10% of CSV files on the sites that we visited contain

spatial data and CSV files rarely have informative headers

and often require scanning the entire file to create metadata.

Once metadata are stored, Klimatic briefly scans each new

dataset’s metadata to ensure that the geo-spatial data fit
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within perceivable bounds (e.g., the latitudes and longitudes

exist). If the metadata seem unlikely to be true, the data are

flagged for human review.

B. Extracting Metadata and Indexing
We next process each dataset added to the extraction

queue. This process is performed via an elastically scalable

pool of Docker-based extractor instances. Each such instance

repeatedly downloads datasets via HTTP or GridFTP and

uses a metadata extraction library to complete the Klimatic

metadata model. (We use the UK Gemini 2.2 [8] standard to

represent geospatial metadata.) All metadata are loaded into a

standard PostgreSQL database and indexed via a PostgreSQL

text-search (TS) vector, an alternative to checksums that

creates a unique string out of a dataset’s metadata. This

index allows the crawler to identify if a dataset is already

known to the virtual warehouse, in which case, the duplicate

is recorded in the index, so as to prevent redundant future

accesses to the same file. The TS vector index also makes

it easy for users to check for the availability of certain data

parameters, such as lat, long, variables, start date, end date,

and the dataset’s publisher.

C. Data Storage
If a new dataset is not determined to be a duplicate, the

Klimatic system next converts its contents to a relational

format and loads them into a new PostgreSQL table, so as

to accelerate subsequent retrieval and integration operations.

The data are not otherwise modified, although future work

could involve automatic transformation to reference grids,

perhaps based on analysis of user query histories.
Given the virtually unlimited number of geospatial

datasets, it is infeasible to retain the contents of every dataset.

Thus, we operate a caching strategy. Metadata for every

dataset located via crawling are stored in the index, but

dataset contents are stored only if smaller than a predefined

threshold and are subject to ejection via an LRU policy when

the cache is full. Thus, larger and less popular datasets may

need to be re-fetched when requested by a user. (In future

work, we will also explore alternatives to discarding datasets,

such as compression and transfer to slower, cheaper storage.)

D. Responding to User Queries
Having loaded some number of datasets into the virtual

data lake, we are next concerned with responding to queries.

We show our query model in Figure 3. Our initial query

interface is a simple web GUI using Flask and Python. With

the goal of making the query interface as simple as possible,

we allow users to query using minimum and maximum

latitudes and longitudes (i.e., a bounding box for their data);

the variable(s) they would like included in their dataset; the

begin and end dates; and (optionally) the data provider(s)

from which data is wanted. Klimatic then estimates the

amount of time required to conduct the join and deliver the

dataset. Many queries require more than two minutes for the

join, as many datasets have upward of 2 million cells.
The multiple possible encodings for climate data, most

notably vector and raster, creates challenges when attempting

M1 =

⎡
⎣
5.5 3.5 3.5 4 3.
. 4 . . 4
6 . 2 . 8

⎤
⎦

M2 =

⎡
⎣
. . . 4 4
5 4 3.3 4.2 4
6 4.1 2 4.3 8

⎤
⎦

M3 =

⎡
⎣
5 4.3 3.9 4 4
5 4 3.3 4.2 4
6 4.1 2 4.3 8

⎤
⎦

Fig. 2. F1 on Matrix M to format a vector as a raster. Black values are
original, red are created on first sweep, and orange created on second.

to integrate multiple datasets into one. A vector is a data

structure that represents many observations from a single

point, but at different times (e.g., precipitation levels mea-

sured at a fixed weather station). A raster can be represented

by a two dimensional grid, in which each cell is a certain

area identifiable on a map. Each cell contains the value of

some variable: for example, the percentage of pollen in the

air. Thus, to enable users to retrieve integrated datasets we

require a method for integrating these two formats for cross-

format data analysis: an integration that may involve a sparse

set of vectors and a large raster database. (For example,

∼180,000 weather stations record precipitation in the U.S.,

each with a fixed latitude and longitude, while a complete

radar mapping of the U.S. results in over 760,000 5 km2

raster cells [9].)

We implement this integration via an interpolation from

point values to a scalar field (a raster). We use a series of

sweeping focal operations for some raster M , where each

point in M represents a cell of a given region denoted by

latitudinal and longitudinal boundaries. A focal operation is

defined as the operation on a certain cell with regards to a

small neighborhood around the cell [10]. Our implementation

of this algorithm begins with a focal neighborhood of 1, or

the eight diagonal or adjacent cells of a selected empty cell.

If there are at least two neighbors, the new cell becomes the

non-weighted average of all cells in region F1. The center

of F1 is moved from cell-to-cell until either all cells are full

or there exist F1s such that there are not at least two value-

bearing cells inside. The algorithm then adds one more series

of neighbors (i.e., neighbors of neighbors), which we call F2,

F3 through Fn, where Fn results in a complete matrix.

Figure 2 illustrates this process, where M1 is the original

sparse matrix and M2 and M3 are the second and third

sweeps. As far as the data’s user-defined, post-processing

integrity is concerned, we record in Klimatic’s output header

the number of sweeps necessary to make the vector com-

patible with rasters. We may infer that a higher number of

sweeps results in less ‘pure’ data. Our interface will also

prompt users with information regarding the data’s post-

processing integrity as well as related data that could be

selected to increase this integrity.

Klimatic currently supports the creation of integrated
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Fig. 3. Work flow for Klimatic’s data integration and distribution.

Fig. 4. Distribution of Klimatic’s total datasets by provider-type

NetCDF and CSV files. NetCDF conventions simplify the

creation of an integrated NetCDF dataset. NetCDF files can

be conceptualized as having containers for multiple variables,

while assuming that matching indices across the containers

refers to a specific data point; index 0 in each container refers

to the first data point, index 1 the second, and so on.

If a query response requires integration of both vector

and raster data, Klimatic currently uses the grid dictated by

the raster. Each vector always lies within a raster cell, so

each cell containing one vector becomes the value of the

vector at a given time. If multiple vectors fall within the

same raster cell, we currently choose to average their values.

(Here and elsewhere, we apply one data conversion strategy

automatically in our prototype. Ultimately, we will want to

allow the user to control such actions.) Once a standardized

grid is achieved, the addition of a variable only requires

the addition of another variable container, as long as the

spatial and temporal bounds align. If the resolutions and

time-bounds are different (e.g., if one dataset is measured

in months and the other in years), we aggregate to the larger

period (i.e., years). Future work could involve imputing

values for missing areas and time periods, but this will

require statistical distribution analysis.

IV. EVALUATION

We aim in Klimatic to include geospatial data that span

all areas and many variables and years, originating from

both large repositories (e.g., UCAR and NOAA) and smaller

private research, educational, and industrial sources. The

importance of considering smaller sources is shown by

the fact that only 19.5% of Klimatic’s data are known to

originate from large sources, as shown in Figure 4. (We

classify providers based on information obtained from the

Fig. 5. Time (minutes) to find, extract and store metadata from, and add
data to virtual warehouse for, 750 ∼100 MB files, via Globus and HTTP

crawled data locations. 28.8% of providers did not supply

this information at the time of the tests.)

Klimatic has so far extracted metadata and constructed a

searchable index for 10,002 datasets (∼11.5 TB). The area

covered by Klimatic’s collected data is expansive, with the

least-covered regions of the world (e.g., South America, Aus-

tralia, Antarctica) having ∼1,250–3,350 datasets each and the

most-covered areas (e.g., North America, Europe, Australia,

and Asia) having ∼8,900–9,500 datasets apiece. The datasets

vary in resolution, from coarse 100 km x 100 km cells to

fine 50 m x 100 m cells. To increase uniformity of coverage

across regions of the globe, Klimatic could prioritize data in

the less-covered areas.

From the perspective of computational efficiency, Klimatic

performs well on dataset ingestion. To test data ingest perfor-

mance, we evaluated the system on 750 randomly selected

datasets averaging 100 MB each (for a total of 75 GB)

stored in remote Globus and web sources, using 1, 2, and 4

crawler instances. As shown in Figure 5, the Globus scraper

outperforms the web scraper due to the overhead inherent

in the web scraper, as it concurrently traverses all links on

a page to find—and explore—applicable paths to datasets

before moving on to the next source.

V. RELATED WORK

Related work encompasses areas such as data lakes and

other integrated data approaches, geospatial data distribution,

and metadata extraction. Klimatic expands upon prior work

by addressing the challenges of collecting, indexing, and

distributing geospatial data from diverse sources via a system

based on data lake concepts [2]. We build upon others’ efforts

to encapsulate the steps necessary to bring raw geospatial

data from its source to a user, including its acquisition,

processing, and distribution [11].

The motivation for our work aligns with other efforts to

scrape scientific data and extract metadata. For example,

similar approaches have been applied to collect scientific

information from papers, including our own work on extract-

ing polymer properties from journal publications [12]. Others

have used metadata extraction and indexing for business and

industrial purposes, as there are noticeable increases in I/O

performance and decreases in required human effort [13].

In biomedicine, data commons are proposed for integrating
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genomics data [14]. In the geosciences there is growing

emphasis on making data broadly accessible, as in the

Earth Grid System Federation [15], which links climate

simulation data archives worldwide; NCAR’s Research Data

Archive [16], which provides access to NCAR data; and

DataOne [17], an online service that indexes a large number

of geospatial datasets housed in various repositories. Our

approach is differentiated as Klimatic aims to scrape arbitrary

distributed data, rather than only those housed in repositories.

Other applications such as ESRI’s ArcGIS [18] and Cad-

corp’s SIS [19] allow for metadata collection and dataset

integration, but require significant human input. One is

also limited to the data stored in those systems and one’s

own unindexed data. By removing the human element from

metadata extraction, Klimatic ensures that a source’s original

metadata are cited correctly, leaving no room for human

error [20], [21]. Klimatic follows the standard UK Gemini

metadata storage convention [8], but given the broad scope

of the data that Klimatic processes, some metadata are often

justifiably missing, as when vector data, which correspond

to a single point, lack bounding coordinates.

VI. SUMMARY

Klimatic effectively provides an accessible architecture for

the collection and dissemination of large, distributed geospa-

tial data. It is able to automatically crawl huge amounts of

data distributed across various storage systems and accessible

via HTTP and Globus.

With continued work to add additional datasets to Klimatic

and make the indexed data more broadly accessible to

applications, we hope that Klimatic will become a great asset

to the many communities that use geospatial data. In addition

to seeking more data for Klimatic, a number of software

improvements can occur in the short run. First we can

create smarter metadata extraction. Additions to the current

Klimatic process could include comparing sources that con-

tain conflicting data, and using the geographic distributions

to determine which data better fit a physical phenomenon.

For example, we find that latitude and longitude are often

encoded inconsistently, particularly in CSV files, as when

154.3◦ is used in some files to mean 154◦ and 0.3◦, and

in other files 154◦ and 3 minutes). Klimatic could look at

additional dataset elements (e.g., city names, if available)

to determine the intended interpretation of degrees versus

minutes, and convert it to the standard convention (degrees,

minutes, and seconds).

Additionally, the user experience can be improved through

an enhanced interface and better caching strategies. UI

enhancements could include allowing users to choose data

from a map, providing better areas to include for a research

study by analyzing the underlying statistics of a dataset

(i.e., “These adjacent datasets share correlations in [selected

variable]”), or allowing users to trace an outline of their

desired data area on a map and getting a very specialized

dataset in return, perhaps as a shapefile—an area bounded

by a connect-the-dots convex hull commonly used in geo-

graphic analysis. Shapefiles are helpful in analysis of non-

rectangular neighborhoods or odd-shaped natural features,

including lakes and mountains. Furthermore, we plan to

provide support for other, less popular file types to fully

encompass the geospatial data domain. To allow the fast

processing between datasets, the caching algorithm used in

the data lake can better learn which files to hold on local

disk in order to minimize the time required for the average

user’s queries. We also plan to implement a periodic checker

to search each indexed dataset’s origin for updates.
Other future work will focus on developing collaborative

applications and expanding functionality. Klimatic is built to

support external applications that may access data via APIs.

We will collaborate with diverse disciplines to develop plug-

ins to our system that notify a person or a decision-system

when some threshold is reached, which allows that person

or system to react to changes in data in a timely manner.
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