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Abstract—Exploding data volumes and acquisition rates, plus
ever more complex research processes, place significant strain on
research data management processes. It is increasingly common
for data to flow through pipelines comprised of dozens of dif-
ferent management, organization, and analysis steps distributed
across multiple institutions and storage systems. To alleviate the
resulting complexity, we propose a home automation approach
to managing data throughout its lifecycle, in which users specify
via high-level rules the actions that should be performed on data
at different times and locations. To this end, we have developed
RIPPLE, a responsive storage architecture that allows users to
express data management tasks via a rules notation. RIPPLE
monitors storage systems for events, evaluates rules, and uses
serverless computing techniques to execute actions in response
to these events. We evaluate our solution by applying RIPPLE
to the data lifecycles of two real-world projects, in astronomy
and light source science, and show that it can automate many
mundane and cumbersome data management processes.

I. INTRODUCTION

Researchers are faced with an increasingly complex data
landscape in which data are obtained from a number of dif-
ferent sources (e.g., instruments, computers, published data),
stored in disjoint storage systems, and analyzed on an area of
high performance and cloud computers. Given the increasing
speed at which data are produced, combined with increasingly
complex scientific processes and the requisite data manage-
ment, munging, and organization activities required to make
sense of data, researchers are faced with new bottleneck in
the discovery process. Improving data lifecycle management
practices is essential to enhancing productivity, facilitating
reproducible research, and encouraging collaboration [1]. Yet
current practices are typically manual and ad hoc, requiring
considerable human effort and ensuring little adherence to
best practices. As a result, researchers struggle to manage,
analyze, and share data reliably and efficiently [2] and research
results are frequently irreproducible. We posit that researchers
require automated methods for managing their data such that
tedious and repetitive tasks (e.g., transferring, archiving, and
analyzing) are accomplished without continuous user input.

Automated approaches have revolutionized many domains
such as machinery use in factories, aircraft flight, and more
recently managing devices within the home. Home automation
in particular shares similar features to research data manage-
ment: as it is focuses on controlling and automating a range
of devices within a home such as lighting, heating, security,

and other appliances. The main goal of these systems is to
increase convenience and decrease time spent on mundane
tasks by automating repetitive processes, such as turning on
lights when it gets dark, setting security alarms when leaving
the house, and controlling room temperatures based on weather
conditions. Home automation systems enable users to finely
customize and control their environments by defining policies
that dictate how household appliances should perform under
different circumstances. It is these same types of capabilities
that are needed for managing research data.

In this paper we present a new approach to data management
called RIPPLE. RIPPLE aims to allow researchers, lab man-
agers, and administrators to define data management practices
as a set of simple if-trigger-then-action recipes. Actions, such
as moving data or executing an analysis script, are triggered
in response to events, such as files being created, modified,
or deleted. Filesystem events are captured through various
APIs, including Linux’s inotify and the Globus API [3].
Given the broad range of actions that might be possible
RIPPLE builds upon severless computing systems to enable
on-demand processing of recipes. In particular, using Amazon
Web Services Lambda as a scalable and low-latency solution
for performing arbitrary, loosely coupled actions.

To guide and evaluate our approach we focus on two
use cases: the data management processes associated with
the Large Synoptic Survey Telescope (LSST) and a multi-
institutional materials science project. We show that RIPPLE
can satisfy the needs of these two projects by automating im-
portant data management tasks. Furthermore, we evaluate the
scalability and performance of our prototype implementation
by analyzing event collection and processing operations.

The rest of this paper is organized as follows. Section II
discusses related work. We describe the LSST and materials
science scenarios in Section III. We present RIPPLE in Sec-
tion IV. We evaluate RIPPLE’s performance in Section V and
its ability to meet application requriements in Section VI. We
summarize in Section VII.

II. RELATED WORK

Previous rule-based approaches to data management [4]
are primarily designed for expert administration of large data
stores. Our approach is differentiated by its simple recipe



notation, decoupling of rules from data management and stor-
age technologies, and use of serverless computing to evaluate
rules. Below we discuss several rules engines and discuss how
they relate to our work.

The integrated Rule-Oriented Data System (iRODS) [5] uses
a powerful rules engine to manage the data lifecycle of the
files and stores that it governs. iRODS is a closed system:
data are imported into an iRODS data grid that is managed
entirely by iRODS and administrators use rules to configure
the management policies to be followed within that data grid.
In contrast, RIPPLE is an open system: any authorized user
may associate rules with any storage system. Both approaches
have their place in the data landscape. iRODS has been used
successfully in large projects. Whereas RIPPLE aims to benefit
the dynamic, heterogeneous, multi-project environments that
typify many modern research labs.

IOBox [6] is designed to extract, transform, and load data
into a catalog. It is able to crawl and monitor a filesystem,
detect file changes (e.g., creation, modification, deletion), and
apply pattern matching rules against file names to determine
what actions (ETL) should be taken. RIPPLE extends this
model by allowing scalable and distributed event detection,
and supporting an arbitrary range of actions.

The Robinhood Policy Engine [7] is designed to manage
large HPC filesystems. Although it can support any POSIX
filesystem, it implements advanced features for Lustre. Robin-
hood maintains a database of file metadata. It allows bulk
actions to be scheduled for execution against sets of files. For
example, migrating or purging stale data. Robinhood provides
routines to manage and monitor filesystems efficiently, such as
those used to find files, determine usage, and produce reports.
It is not the goal of RIPPLE to provide such utilities. Instead,
RIPPLE is designed to empower users to implement simple,
yet effective data management strategies.

SPADE [8] supports automated transfer and transformation
of data. Users configure a SPADE dropbox. If a file is written
to the dropbox, SPADE creates (or detects) an accompanying
semaphore file to signal that the file is complete and that a
transfer should begin. SPADE can also enable data archival
or execution of analysis scripts in response to data arrival.
The SPOT framework [9] is a workflow management solution
developed specifically for the Advanced Light Source (ALS).
SPOT leverages SPADE to automate the analysis, transfer,
storage, and sharing, of ALS users’ data using HPC resources.
The framework includes a Web interface to provide real-
time feedback. In contrast to SPOT’s pre-defined flows which
handle very large data volumes and numbers of data sets,
RIPPLE empowers non-technical users to define custom recipes
which can be combined into adaptive flows.

III. SCENARIOS

We base the design and implementation of RIPPLE on the
data management requirements of two large research projects:
the LSST and X-ray science at the ALS. Each provides a
unique set of data management requirements and demonstrates

the flexibility of our solution. Here we briefly describe these
projects and their requirements.

A. Large Synoptic Survey Telescope

The LSST is a wide-field telescope currently under con-
struction in Chile. It uses a new kind of telescope to capture
panoramic, 3.2-gigapixel, snapshots of the visible sky every
30 seconds. It is expected to produce more than 30 terabytes
of data every night. Over the LSST’s 10 year lifetime, it will
map billions of stars and galaxies. These data will be used
to explore the structure of the Milky Way and assist in the
exploration of dark energy and dark matter.

The computational and data management requirements of
the LSST are substantial [10]. The project requires near real-
time detection of “interesting” events, such as supernovae and
asteroid detection. In addition, all image data will be analyzed
and made available to the public. To meet the storage needs of
this project two data centers (called custodial stores), located
in Chile and Illinois, are being readied to reliably store the
data generated by the telescope.

The custodial stores have replication, recovery, and analyti-
cal actions needs that must be reliably enforced and could be
automated. For example, data must be immediately transferred
from the telescope and archived in both stores to provide fault
tolerance; data must be cataloged and made discoverable once
it enters a store such that scientists can later use the data for
analysis; and corrupted or deleted data must be recovered from
another store.

B. X-ray science at the ALS

The ALS is a DOE-funded synchrotron light source housed
at Lawrence Berkeley National Laboratory. It is one of the
brightest sources of ultraviolet and soft x-ray light in the
world. Given its unique characteristics, scientists from many
fields use the ALS to conduct a wide array of experiments
including spectroscopy, microscopy, and diffraction. The ALS
is comprised of almost 40 beamlines that serve approximately
2,000 researchers each year.

The ALS is representative of the data management lifecycle
of many large instruments and research facilities. The data
generated by a beamline are large, generated frequently, and
requires substantial computational resources to analyze in a
timely manner. Moreover, researchers using each beamline are
granted short allocations of time in which to conduct their
experiments. They typically run a number of experiments,
collect a large amount of data, and then analyze those data
at a latter point in time using large-scale resources.

In some cases, analyses are conducted throughout the ex-
periment to guide the experimental process. Typically, data are
transferred to a compute resource where a variety of quality
control procedures and analysis algorithms are executed. In
most cases, analysis requires data transformations, parameter
and configuration selection, and creation of a batch submission
file for execution. Upon completion, analysis output is then
transferred back to the researchers.



Fig. 1: RIPPLE architecture. Filesystem events are captured
and evaluated against registered recipes. Lambda functions
evaluate recipes and execute actions.

IV. RIPPLE

RIPPLE is comprised of a cloud-hosted service and a
lightweight agent that can be deployed on various filesystems.
An overview of RIPPLE’s architecture is shown in Fig. 1. The
local agent includes a SQLite database, a monitor service, a
message queue, and a processing element for executing actions
(in containers) locally. The SQLite database stores a local copy
of all active recipes. The monitor, based on the Python module
Watchdog, captures local filesystem events. The basic evalua-
tion process compares each event against all filter conditions
defined by active recipes. When an event matches a particular
recipe, the event is passed to the processing component via a
reliable message queue.

The processing component of the agent publishes triggered
events to an Amazon Simple Notification Service (SNS) topic.
The SNS topic triggers the invocation of a Lambda function.
Lambda functions are used to evaluate the event and recipe,
and then to manage the execution of actions.

RIPPLE supports three types of actions: 1) execution of
processes on the local node; 2) invocation of external APIs;
and 3) execution of lightweight Lambda functions. In each
case RIPPLE uses a Lambda function to invoke the action.
Execution on the local machine is achieved by initiating local
Docker containers or submitting subprocess procedures.

A. Recipes

The flexibility of RIPPLE recipes enables the expression of
a wide range of custom functions. To make our solution as
accessible as possible, we have employed a simple if-trigger-
then-action style definition of recipes. This representation
allows even non-technical users to create custom programs.
The usability of the trigger-action programming model has
been proven by the If-This-Then-That (IFTTT) [11] service.
Users have created and shared hundreds of thousands of IFTTT
recipes [12] with vastly different functions, such as notifying
of predicted weather events and automatically extracting and
storing of images from Facebook.

A RIPPLE recipe is represented as a JSON document com-
prised of a “trigger” event and an “action” component. The
trigger specifies the condition that an event must match in
order to invoke the action. The action describes what function
is to be executed in response to the event. An example recipe
can be seen in Listing 1. In this recipe, the trigger defines
the source of the event as the local filesystem; the type

of event as file creation; and a path and regular expression
describing conditions to execute the action (any file in the
/path/to/monitor/ directory with a .h5 extension). The action
describes the service to invoke (in this case, globus); the
operation to execute (transfer); and arguments for performing
the operation. Target modifiers allow actions to be performed
on files that did not raise the triggering event. In the given
example, the target implies the operation should be performed
on the file raising the event.

Listing 1: An example RIPPLE recipe.

"recipe":{
"trigger": {

"username": "ryan",
"monitor": "filesystem",
"event": "FileCreatedEvent",
"directory": "/path/to/monitor/",
"filename": ".*.h5$"

},
"action": {
"service": "globus",
"type": "transfer"
"source_ep": "endpoint1",
"dest_ep": "endpoint2",
"target_name": "$filename",
"target_match": "",
"target_replace": "",
"target_path": "/˜/$filename.h5",
"task": "",
"access_token": "<access token>"

}
}

B. Event detection and evaluation

RIPPLE relies on a flexible event monitoring model that
can be used in different environments. Specifically, it uses
the Python Watchdog module which offers multiple observers
to detect filesystem events. Watchdog’s observers include:
Linux inotify, Windows FSMonitor, Mac OS FSEvents and
kqueue, OS-independent polling (periodic disk snapshots), and
support for custom event sources via third party APIs (e.g., the
Globus Transfer API). The scope for a Watchdog observer is
determined by the paths specified during its creation. RIPPLE
evaluates all active recipes to determine filesystem paths of
interest and collapses these paths to instantiate a number of
observers to monitor them.

Multiple events can occur in response to an individual action
on a filesystem. For example, the action of creating a file can
cause inotify to raise events concerning the file’s creation,
modification, and closure, as well as the parent directory’s
modification. Thus it is crucial to filter events and minimize
the overhead caused by passing irrelevant events to the RIPPLE
service. The agent’s filtering phase removes superfluous events
by reporting only those that match active recipe conditions.

RIPPLE can also respond to events created by external
services. For example, we have implemented a Watchdog
observer that periodically polls the Globus Transfer service,
checks for successful transfer operations (file movement, cre-
ation, deletion), and raises appropriate events. The events
generated by this observer are modeled in the same way as
filesystem events and are processed by the monitor.



C. Actions

RIPPLE aims to support an arbitrary set of extensible actions
that may be invoked as a result of an event. The initial set of
actions have been developed to address the requirements of
the scenarios discussed in Section III. Specifically, RIPPLE
currently supports execution of Lambda functions, external
services (via Globus and AWS services), and containers lo-
cated on the storage system. As part of the recipe definition
users are able to specify additional state to be passed to
the action for execution: for example, where data should be
replicated or the HPC queue to use for execution.

Lambda functions provide the ability to execute arbitrary
code, typically, for short periods of time. By supporting such
functions, users can define complex actions that are executed
within their own Amazon context as a result of a recipe. This is
achieved by specifying a Lambda function’s Amazon Resource
Number (ARN) as the action of a recipe.

External services: RIPPLE supports two general services:
Globus and Amazon Simple Messaging Service (SMS).
Globus allows users to transfer, replicate, synchronize, share,
and delete data from arbitrary storage locations. Globus actions
can be configured to use any of these capabilities. To do so,
we have developed a Lambda function that authenticates with
Globus (using a predefined token included in the recipe def-
inition) and executes the appropriate action using the Globus
API. Depending on the operation to be performed information
such as the source or destination endpoint is included in
the recipe definition. In addition to transferring data, the
same Lambda function is also capable of initiating Globus
delete commands and constructing Globus shared endpoints—
a means to securely share data between collaborators.

RIPPLE can send emails to notify users of events such as
new data being placed in an archive or data being deleted.
This capability is based on integration with Amazon’s Simple
Messaging Service (SMS) and again uses a Lambda function
to perform this operation using a customizable destination
email address.

Local execution: There are many scenarios in which the
desired action of a rule is to perform an operation on a
local file directly. RIPPLE provides this support in one of two
ways, either by running a Docker container, or by initiating a
subprocess procedure. Docker enables execution encapsulation
such that it is reliably and securely executed on arbitrary
endpoints. Examples of supported actions include extracting
metadata, creating a persistent identifier for a dataset, and
compressing data prior to archival. However, Docker is not
always suitable due to its need for administrator privileges.
For example, in situations where users do not have permission
to run docker containers (such as the HPC resources used
by the ALS scenario) we instead leverage Python subprocess
commands to execute different scripts and applications. Ex-
amples of RIPPLE’s subprocess execution include modifying
files using Linux commands, creating batch submission files,
and dispatching jobs to a supercomputer execution queue.
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Fig. 2: Number of events processed per second on different
machines with the inotify and polling observers.

V. EVALUATION

We explore the performance and scalability of the RIPPLE
system from three perspectives: event detection, event filtering,
and execution of actions when Amazon Lambda functions are
in different states of readiness.

A. Event Detection

We deployed RIPPLE over three machines: a personal lap-
top, a c4.xlarge AWS EC2 instance, and a supercomputer
login node (NERSC’s Edison). RIPPLE’s event detection rate
has been determined for each of these machines by timing
how long it takes for 10,000 events to be detected. To min-
imize overhead we disable RIPPLE’s filtering (rule condition
matching) capabilities and simply count the events that are
detected. Fig. 2 shows the performance of two distinct event
observation methods: inotify and polling. In each experiment,
we first established the observer and then created 10,000
files in a monitored directory, touched each file to raise a
modification event, and deleted each file to raise a deletion
event. The results show that the personal laptop and EC2
instance are capable of detecting more than 10,000 events per
second with both the polling and inotify observers. We note
that modification events are not detected as reliably as creation
and deletion events with either observer. This is shown in the
figure as less than 1000 modification events are recorded when
10,000 files were modified in the space of 0.2 seconds. These
results are expected when using the polling observer as it is
configured to take snapshots just once a second. The NERSC
experiments demonstrate the lowest event throughput as they
were conducted on a large networked file system.

B. Filtering Cost

In order to understand the overhead incurred by the RIPPLE
agent filtering events we investigated the rate at which events
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Fig. 3: Event filtering overhead.

are detected when filtering is conducted. Fig. 3 shows the
overhead incurred by the filtering process. The figure shows
that the overhead is typically largest for creation events. This
is due to the filters enabled in the experiment. The experiment
employs a two-step filtering process where each event is first
evaluated to see if it is of type create and if successful, the
filename is compared to a condition. The overhead caused by
filtering is negligible for modification events due to the limited
detection rate.

C. Lambda Performance

We explore the performance of four distinct Lambda func-
tions which perform one of the following tasks: initiate a
Globus transfer, send an email, log data in a database, and
query a database. Lambda functions are said to be in a cold
state if they are first started in response to an invocation. Fol-
lowing an invocation the function becomes warm, or cached.
Fig. 4 shows the average execution time for each of the
four Lambda functions in both cold and warm states. The
invocation time is computed as the difference between the
reported time a request is placed in a SNS queue and the
time that the Lambda function starts. The execution time is
the reported duration of the Lambda function’s execution. The
results show a significant overhead incurred by cold functions
and that invoking Globus actions requires substantially more
time than AWS services. This is in part due to the requirement
of the Lambda function to import the globus-sdk module.

VI. USE CASES

To explore RIPPLE’s ability to meet application require-
ments we have deployed testbeds of the scenarios discussed
in Section III. In each case we have deployed RIPPLE agents
and developed a suite of recipes to automate their respective
data lifecycles.
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Fig. 5: LSST testbed and automated data lifecycle.

A. RIPPLE and LSST

To represent the LSST scenario we deployed a testbed
with three AWS instances and a Sparrow, a Blackpearl tape
storage system at Argonne National Laboratory. The three
AWS instances represent the observatory and two custodial
stores (Chile and NCSA). Within each instance, we created
multiple Globus shared endpoints to represent different storage
facilities. For example, the instance representing the observa-
tory has shared endpoints mounted at /telescope and /archiver.
The custodial storage instances mount shared endpoints to
represent the landing zone, lower performance storage (mag-
netic), and archival tape storage. The instance representing
the Chilean store uses Argonne’s Sparrow, to archive data.
Each instance has an individual RIPPLE agent deployed and is
configured with recipes to monitor the local shared endpoints.
Finally, to represent the LSST file catalog we use an AWS
RDS database that manages information about each file stored
in the custodial stores.

Fig. 5 provides an overview of the testbed and the associated
data lifecycle. The data flow is initiated by (1) the telescope



generating an image, typically stored in a FITS format, which
is then placed at the archiver. RIPPLE filters filesystem events
within the archiver directory for those with the FITS extension.
Creation of a file in this directory triggers a recipe to (2)
perform a high-speed HTTPS data upload to the Chilean
custodial store. Once data arrive in the custodial landing zone,
(3, 4) recipes are triggered that launch local Docker containers
to perform metadata extraction and cataloging for each new
file. Metadata regarding the file are placed in a local JSON
file so that Globus’ search capabilities can index the file.
Additionally, a unique identifier for the file is generated using
the Minid [13] service before being (5) inserted into the file
catalog. The data are then (6) automatically synchronized to
the NCSA custodial store where similar metadata processing
occurs. The use of the Minid service allows us to use the same
unique identifier for the file regardless of location, meaning
the file catalog is consistent between stores. As data are
propagated down the storage tiers (7) within each custodial
store, the metadata and file catalogs are dynamically updated.
Prior to archiving the data, a RIPPLE recipe triggers file
compression; creation of the compressed (gzip) file triggers
the final recipe that transfers the file to Sparrow.

Recovery and consistency are of utmost importance for
LSST as files cannot be recreated. The LSST testbed has been
instrumented with RIPPLE recipes to detect the deletion and
modification of FITS files. Any file that is found to be deleted
or corrupted is automatically replaced by a copy from the other
custodial store.

B. RIPPLE and ALS

The ALS testbed has been constructed by deploying a
RIPPLE agent on both an ALS machine and a NERSC login
node. For exploratory purposes, we were given access to a
heartbeat application to reproduce data being generated from
an ALS beamline. We implemented recipes to manage the data
lifecycle of beamline datasets from creation, through execu-
tion, and finally share the results with specific collaborators.

Once the heartbeat application finishes writing results to an
HDF5 file a new file, which signifies the process’s completion,
is created. The system first detects the subsequent file creation
and initiates a transfer of the HDF5 output to NERSC. On
arrival at NERSC (detected by the Globus Transfer API
observer) a recipe ensures that a metadata file and a batch
submission file are dynamically created using the input. The
creation of the batch submission file triggers the workload
to be submitted to the Edison supercomputer’s queue. Once
the workload completes the output file is detected and is
transferred back to the ALS machine. On arrival at the ALS
a shared endpoint is created in order to expose the resulting
dataset to a set of collaborators. Finally, an email notification
is sent to inform collaborators of the new data and directs
them to the shared endpoint.

VII. CONCLUSION

RIPPLE aims to simplify the management of complex data
lifecycles. In the same way that home automation systems

simplify and automate tedious tasks associated with managing
a large number of home appliances, RIPPLE supports auto-
mated actions in response to various events. In this paper we
described how RIPPLE can achieve these goals and investi-
gated the scalability challenges associated with deploying such
a service in practice. We showed that RIPPLE can be used
to automate two real-world workflows that manage data in
two large scientific scenarios. These examples used RIPPLE to
automate data transfer, replication, cataloging, recovery, HPC
execution, archival, and sharing.

In future work we aim to apply RIPPLE to additional
scientific use cases to gather requirements and generalize our
model. We ultimately aim to integrate RIPPLE in the Globus
platform, enabling thousands of users to create custom data
flows. We will also investigate developing a programming
model, inspired by IFTTT, to simplify the definition of flows.
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